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Circles

1.	 (i) True. Radius of circle always lies inside the circle. 
(ii) True, An arc is the connected section of circumference 
of the circle.
2.	 (i) Diameter = 2 × radius of a circle
(ii)	 Circle having the same centre and different radii are 
called concentric circles.
(iii)	 Point A is neither interior point nor exterior point of 
the circle. It lies on the circle.
3.	 Let r be the radius of circle.
In DAOC,
	 OA = OC = r � [Radii of same circle]
\	 ∠OAC = ∠OCA = x� ...(i) [ Angles opposite to
� equal sides of a triangle are equal]
	 BOC is a straight line.
\	 ∠AOC + ∠AOB = 180°
⇒	 ∠AOC = 180° – 70°
⇒	 ∠AOC = 110°
Thus, angle subtended by chord AC at centre O, ∠AOC 
= 110°
Now, in DAOC, ∠OAC + ∠OCA + ∠AOC = 180°
x + x + ∠AOC = 180°� [Using (i)]
⇒	 2x = 180° – 110°
⇒	 2x = 70° ⇒ x = 35°
4.	 Let AB be the chord of a circle 
which makes a right angle at centre O.
Radius of circle = 10 cm          [Given]
\	 OA = OB = 10 cm                  ...(i)
Now, in right DOAB, we have
	 AB2 = OA2 + OB2       

� [By Pythagoras theorem]
⇒	 AB2 = (10)2 + (10)2 � [Using (i)]
⇒	 AB2 = 100 + 100 
⇒	 AB AB= ⇒ =200 10 2 cm
Hence, length of chord of circle is 10 2 cm.
5.	 Given, AB = BC = CA
We know that, equal chords of a circle subtend equal 
angles at the centre.
\	 ∠AOB = ∠BOC = ∠AOC� ...(i)
Now, ∠AOB + ∠BOC + ∠AOC = 360°
� [Q Sum of angles at a point is 360°]
⇒	 3∠AOB = 360°� [Using (i)]

⇒	 ∠AOB = 
360
3

°
= 120°

Hence, angle subtended by the chords AB, BC and CA at 
the centre O is 120°.
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6.	 Given, CD = DE = EF = FG
We know that, equal chords of a circle subtend equal 
angles at the centre.
\	 ∠COD = ∠DOE = ∠EOF = ∠FOG = 40° � ...(i)
Now, ∠COG = ∠COD + ∠DOE + ∠EOF + ∠FOG
⇒	 ∠COG = 4 × ∠COD = 4 × 40°
⇒	 ∠COG = 160°
\	 Reflex ∠COG = 360° – 160° = 200°
7.	 Given, radius (OB) = 5 cm, OC = 3 cm and OC ⊥ AB.
Now, in right angled DOCB,
	 OB2 = OC2 + BC2 � [By Pythagoras theorem]
⇒	 (5)2 = (3)2 + BC2

⇒	 BC2 = 52 – 32 = 25 – 9 = 16 
⇒	 BC = 4 cm � [ BC ≠ – 4, as length can’t be negative]
We know that, the perpendicular from the centre of a 
circle to a chord bisects the chord.
\	 AB = 2BC = 2 × 4 = 8 cm
8.	 We know that the perpendicular 
bisector of any chord of a circle always 
passes through the centre of the circle.
Since, l is the perpendicular bisector 
of AB. Therefore, l passes through the 
centre, O of the circle.
But, l ⊥ AB and AB || CD  ⇒  l ⊥ CD.
Thus, l ⊥ CD and passes through 
the centre, O of the circle. So, l is the 
perpendicular bisector of CD also.
9.	 Let there be two circles which intersect at three 
points say at A, B and C. Clearly, A, B and C are not 
collinear. We know that through three non-collinear 
points A, B and C one and only one circle can pass. 
Therefore, there cannot be two circles passing through A, 
B and C. In other words, the two circles cannot intersect 
at more than two points.
10.	 Given, PQ and RS are two chords of a circle having 
centre at O and ON = 4 cm.
Since, equal chords of a circle are equidistant from the 
centre.
\	 OM = ON = 4 cm
11.	 Draw OE ⊥ AB and OF ⊥ CD.
In DOEP and DOFP, we have
∠OEP = ∠OFP      [Each equal 90°]
OP = OP                          [Common]
and ∠OPE = ∠OPF   [Q OP bisects ∠APD]
\	 DOEP ≅ DOFP� [By AAS congruency criteria]
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⇒	 OE = OF � [By C.P.C.T.]
Thus, chords AB and CD are equidistant from the 
centre O of the circle.
But, chords of a circle which are equidistant from the 
centre are equal.
\	 AB = CD

12.	 Given : AB and CD are two equal chords of a circle 
intersecting at a point P.
To prove : PB = PD
Construction : Join OP, draw 
OL ^ AB and OM ^ CD
Proof : We have, AB = CD
⇒	 OL = OM� ...(i)
� [ Equal chords of a circle are equidistant from the 
� centre]
Now, in DOLP and DOMP,
OL = OM � [From (i)]
∠OLP = ∠OMP � [Each equal to 90°]
OP = OP � [Common]
\  DOLP @ DOMP� [By RHS congruency criteria]
⇒	 LP = MP � [By C.P.C.T.]... (ii)
Also, AB = CD � [Given]

⇒ =1
2

1
2

( ) ( )AB CD

⇒	 BL = DM� ... (iii)
[Q The perpendicular drawn from the centre of a circle 
bisects the chord.]
On subtracting (iii) from (ii), we get
LP – BL = MP – DM
⇒	 PB = PD
13.	 In DOAB, OA = OB � [Radii of same circle]
\	 ∠OBA = ∠OAB = 40°
[ Angles opposite to equal sides of a triangle are equal]
Also, ∠AOB + ∠OBA + ∠OAB = 180°
� [ Sum of angles of a triangle is 180°]
\	 ∠AOB + 40° + 40° = 180°
⇒	 ∠AOB = 180° – 80° = 100°
Since, the angle subtended by an arc at the centre is twice 
the angle subtended by it at any point on the remaining 
part of the circle.
\	 ∠AOB = 2 ∠ACB  ⇒  100° = 2∠ACB
\	 ∠ACB = 50°
14.	 Given, ∠AOC = 130°
Reflex ∠AOC = 360° – ∠AOC
⇒	 Reflex ∠AOC = 360° – 130° = 230°
We know that, the angle subtended by an arc at the 
centre is twice the angle subtended by it at any point on 
the remaining part of the circle.
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\	 ∠ABC = 1
2
 (Reflex ∠AOC)

= × ° = °1
2

230 115

15.	 Given, circle C(O, r) and OD ⊥ AB.
\	 ∠AOD = ∠BOD = 90°
We know, angle subtended by an 
arc at the centre is double the angle 
subtended by it at any point on the 
remaining part of circle.
So, ∠BOD = 2∠BAD

⇒	 ∠BAD = 1
2

 ∠BOD = 1
2

 × 90° = 45°

Similarly, ∠AOD = 2∠ACD

⇒	 ∠ACD = 
1
2 ∠AOD = 

1
2

 × 90° = 45°

16.	 Join AB.
∠ABD = 90°
     [Angle in a semi-circle]
∠ABC = 90°
     [Angle in a semi-circle]
So, ∠ABD + ∠ABC = 90° + 90° = 180°
Therefore, DBC is a straight line. Thus, B lies on the line 
segment DC.
17.	 ∠ACB = ∠BDA� [ Angles in the same segment.]
But, ∠ACB = 40° � [Given]
⇒	 y = 40°
18.	 True
Given, ∠BAC = 45° and ∠BDC 
= 45°, which shows that angles in the 
same segment of a circle are equal. 
Thus, A, B, C and D are concyclic.

19.	 Given, ED | | AC, ∠CBE = 50°
∠CBE = ∠1� [Angles in the same segment]�
\	 ∠1 = 50° 	�  ...(i) (Q  ∠CBE = 50°)
∠AEC = 90°	�  ...(ii) [Angle in a semi-circle]
Now, in DAEC,
∠1 + ∠AEC + ∠2 = 180°� [By Angle sum property of a 
� triangle]
⇒	 50° + 90° + ∠2 = 180°
                            [From (i) and (ii)]
⇒	 ∠2 = 180° – 140°
⇒	 ∠2 = 40°                           ...(iii)
Now, ED | | AC                     [Given]
\	 ∠2 = ∠3 [Alternate interior angles]
\	 ∠3 = 40° i.e., ∠CED = 40°
20.	 Since, MAB is a straight line.
\	 ∠MAD + ∠DAB = 180°
⇒	 ∠DAB = 180° – ∠MAD = 180° – 110°
\	 ∠DAB = 70°
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Since, ABCD is a cyclic quadrilateral.
\	 ∠BAD + ∠BCD = 180°
⇒	 ∠BCD = 180° – ∠BAD = 180° – 70°  ⇒  ∠BCD = 110°
Now, DCN is a straight line.
\	 ∠DCB + ∠BCN = 180°
⇒	 ∠BCN = 180° – ∠DCB = 180° – 110°
\	 ∠BCN = 70°

21.	 Since, PSY is a straight line.
\	 ∠PSR + ∠RSY = 180°
⇒	 ∠PSR = 180° – ∠RSY = 180° – 74°
\	 ∠PSR = 106° � ...(i)
Now, Reflex ∠POR = 2 × ∠PSR
�  [Angle subtended by an arc at the centre is
� double the angle subtended by it at any
� point on the remaining part of the circle]
\	 Reflex ∠POR = 2 × 106° � [Using (i)]
	 = 212° 

22.	 Given : ABCD is a parallelogram. A circle, whose 
centre O, passes through A, B is so drawn that it intersects 
AD at P and BC at Q.
To prove : P, Q, C and D are concyclic.
Construction : Join PQ.
Proof : Q A, P, Q and B are four points lying on a circle.
\	 APQB is a cyclic quadrilateral.
∠1 = ∠A [Exterior angle property of a cyclic quadrilateral]
But ∠A = ∠C� [Opposite angles of parallelogram ABCD]
\	 ∠1 = ∠C� ... (i)
But ∠C + ∠D = 180°� [Sum of co-interior angles is 180°]
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⇒	 ∠1 + ∠D = 180°� [From (i)]
Thus, the quadrilateral QCDP is cyclic.
So, the points P, Q, C and D are concyclic.
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