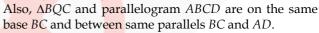


Areas of Parallelograms and Triangles

SOLUTIONS

- **1. (b):** Clearly, in option (b), $\triangle PQR$ and $\triangle QRS$ are on the same base. But, they do not lie between the same parallels.
- **2.** (a): Since, $\triangle PXQ$ and parallelogram PQRS are on the same base PQ and between the same parallels PQ and RS.
- :. $ar(\Delta PXQ) = \frac{1}{2} ar(||^{gm} PQRS) = \frac{1}{2} (20 \times 8) = 80 \text{ cm}^2$
- 3. **(b)**: Area of the rhombus = $\left(\frac{1}{2} \times d_1 \times d_2\right)$
- $= \left(\frac{1}{2} \times 12 \times 16\right) \text{cm}^2 = 96 \text{ cm}^2$
- 4. (c): Area of the trapezium
- = $\frac{1}{2}$ × sum of parallels sides × distance between them
- $= \left\{ \frac{1}{2} \times (12 + 8) \times \frac{13}{2} \right\} \text{ cm}^2 = 65 \text{ cm}^2.$
- **5. (d)**: There are two polygons *PQRA* and *BQRS*, both lie on the same base *QR* and between the same parallels *PS* and *QR*.
- 6. Let 2*x* and 11*x* be height and area of the parallelogram respectively.
- ∴ Area of parallelogram = Base × Height
- \Rightarrow 11x = Base \times 2x \Rightarrow Base = $\frac{11}{2}$ units
- 7. Since, parallelogram ABCD and ΔAEB are on the same base AB and between same parallels PQ and RS.
- $\therefore ar(\Delta AEB) = \frac{1}{2} ar(||^{gm}ABCD)$
- $\Rightarrow ar(\parallel^{gm} ABCD) = 2 ar(AEB) = 2 \times 23 = 46 \text{ cm}^2$
- 8. Since, a diagonal of a parallelogram divides it into two congruent triangles. Also, diagonals of a parallelogram bisect each other and median of a triangle divides it into two triangles of equal area.
- :. The diagonals of a parallelogram divides it into four triangles of equal area.
- 9. Area of parallelogram $PQRS = PQ \times SM$
- \Rightarrow 88 = $K \times 8 \Rightarrow K = 11 \text{ cm}$
- **10.** ∴ Area of parallelogram = Base × Height
- $\therefore PQ \times ST = SP \times QM$
- \Rightarrow 12 × 9 = SP × 6 \Rightarrow SP = $\frac{12 \times 9}{6}$ = 18 cm
- **11.** Since *R* is the mid-pint of *EF*.
- \therefore AR is the Median of $\triangle AEF$.
- :. $ar(\triangle AER) = ar(\triangle AFR)$ [: Median divides a triangle into two triangles of equal area]

- 12. ar(quad. ABCD)
 - $= ar(\Delta ABD) + ar(\Delta BCD)$
- $= \frac{1}{2}(BD \times AM) + \frac{1}{2}(BD \times CN)$
- $=\frac{1}{2}BD(AM+CN)$
- 13. Since, $\triangle APB$ and parallelogram ABCD are on the same base AB and between same parallels AB and DC.
- $\therefore ar(\Delta APB) = \frac{1}{2}ar(||^{gm}ABCD)$
- $\Rightarrow 13 = \frac{1}{2} ar(||^{gm} ABCD)$
- $\Rightarrow ar(||^{gm} ABCD) = 2 \times 13 = 26 \text{ cm}^2$



:
$$ar(\Delta BQC) = \frac{1}{2} ar(||^{gm} ABCD) = \frac{1}{2} \times 26 = 13 \text{ cm}^2$$

- **14.** Since, $\triangle AEB$ and parallelogram ABCD are on the same base AB and between same parallels AB and DC.
- : $ar(\Delta AEB) = \frac{1}{2} (\|g^{m} ABCD) = \frac{1}{2} \times 30 = 15 \text{ cm}^{2}$
- Now, $ar(\Delta ADE) + ar(\Delta BCE) + ar(\Delta AEB) = ar(||^{gm} ABCD)$ $\Rightarrow ar(\Delta ADE) + ar(\Delta BCE) = (30 - 15) \text{ cm}^2 = 15 \text{ cm}^2$
- **15.** From figure, the transversal *DB* is intersecting a pair of lines *DC* and *AB* such that

$$\angle CDB = \angle ABD = 90^{\circ}$$

Thus, these angles form a pair of alternate equal angles.

 \therefore DC || AB

Also, DC = AB = 2.5 units

∴ Quadrilateral *ABCD* is a parallelogram.

Now, area of parallelogram ABCD

- = Base × Corresponding altitude
- $= 2.5 \times 4 = 10 \text{ sq. units}$
- **16.** Since, $\triangle CDN$ and parallelogram ABCD are on the same base CD and between same parallels AB and DC.
- :. $ar(\Delta CDN) = \frac{1}{2} ar(||^{gm} ABCD) = \frac{1}{2} \times 48 \text{ cm}^2 = 24 \text{ cm}^2$

Since, median MN of ΔCDN divides it into two triangles of equal area.

- $\therefore ar(\Delta NDM) = \frac{1}{2}ar(\Delta CDN) = \frac{1}{2} \times 24 = 12 \text{ cm}^2$
- **17.** Given, OD = 10 cm and $OE = 2\sqrt{5} \text{ cm}$
- $\therefore OD^2 = OE^2 + DE^2$
- $\Rightarrow DE = \sqrt{OD^2 OE^2} = \sqrt{(10)^2 (2\sqrt{5})^2} = 4\sqrt{5} \text{ cm}$

Now, $ar(\text{rect.}OCDE) = OE \times DE = 2\sqrt{5} \times 4\sqrt{5} \text{ cm}^2 = 40 \text{ cm}^2$

18. Since, a median of triangle divides it into two triangles of equal area.

$$\therefore ar(\Delta AMC) = \frac{1}{2}ar(\Delta ACD) \qquad ...(i)$$
(: AM is median of ΔACD)

Let h be the height of $\triangle ABE$ from vertex A on opposite side BE.

Then,
$$ar(\Delta ABE) = ar(\Delta ABC) + ar(\Delta ACD) + ar(\Delta ADE)$$

$$= \frac{1}{2} \times BC \times h + \frac{1}{2} \times CD \times h + \frac{1}{2} \times DE \times h$$

$$= \frac{1}{2} \times h(BC + CD + DE) = \frac{1}{2} \times h(3CD) \quad (\because BC = CD = DE)$$

$$= 3 \times \frac{1}{2} \times CD \times h = 3ar(\Delta ACD)$$

$$\Rightarrow ar(\Delta ACD) = \frac{1}{3}ar(\Delta ABE) \qquad ...(ii)$$

From (i) and (ii), we get

$$ar(\Delta AMC) = \frac{1}{2} \times \frac{1}{3} ar(\Delta ABE) = \frac{1}{6} ar(\Delta ABE)$$

19. Since, $\triangle ACD$ and $\triangle ACP$ are on the same base AC and between the same parallels AC and DP.

$$\therefore \quad ar(\Delta ACD) = ar(\Delta ACP)$$

Adding $ar(\Delta ABC)$ on both sides, we get

$$ar(\Delta ACD) + ar(\Delta ABC) = ar(\Delta ACP) + ar(\Delta ABC)$$

$$\Rightarrow ar(\text{quad. }ABCD) = ar(\Delta ABP)$$
 ...(i)

Now, as
$$ar(\Delta ABP) = \frac{1}{2} \times BP \times \text{height} = \frac{1}{2} \times 9 \times 12 = 54 \text{ cm}^2$$

(: Height of triangle is distance between parallels *AD* and *BP*)

$$\therefore ar(ABCD) = 54 \text{ cm}^2$$

20. Join *EF*. Since the line segment joining the mid-points of two sides of a triangle is parallel to the third side. So, $FE \parallel BC$.

Clearly, $\triangle BEF$ and $\triangle CEF$ are on the same base EF and between the same parallels EF and BC.

[Using (i)]

$$\therefore$$
 ar $(\Delta BEF) = ar (\Delta CEF)$

$$\Rightarrow$$
 $ar (\Delta BEF) - ar (\Delta GEF) = ar (\Delta CEF) - ar (\Delta GEF)$

$$\Rightarrow ar(\Delta BFG) = ar(\Delta CEG)$$
 ...(i

We know that a median of a triangle divides it into two triangles of equal areas.

$$\therefore$$
 ar $(\Delta BEC) = ar (\Delta ABE)$

$$\Rightarrow$$
 ar (ΔBGC) + ar (ΔCEG) = ar $(\text{quad. } AFGE)$ + ar (ΔBFG)

$$\Rightarrow ar(\Delta BGC) + ar(\Delta BFG) = ar(\text{quad. } AFGE) + ar(\Delta BFG)$$
[Using (i)]

$$\Rightarrow$$
 ar ($\triangle BGC$) = ar (quad. AFGE) = 35 cm²

21. Since, $\triangle ADF$ and $\triangle DFB$ are on the same base DF and between the same parallels CD and AB.

$$\therefore \quad ar\left(\Delta ADF\right) = ar\left(\Delta DFB\right) = 3 \text{ cm}^2 \qquad \dots (i)$$

Also, in $\triangle ADF$ and $\triangle ECF$, we have

$$\angle AFD = \angle EFC$$
 [Vertically opposite angles]
 $AD = CE$ [: $AD = BC = CE$]

and $\angle DAF = \angle CEF$

[: $BE \parallel AD$ and AE is transversal, therefore alternate interior angles are equal]

∴
$$\triangle ADF \cong \triangle ECF$$
 [By AAS congruence criterion]
⇒ $ar(\triangle ECF) = ar(\triangle ADF) = 3 \text{ cm}^2$...(ii) [From (i)]
Now, in $\triangle BFE$, C is the mid-point of BE .

 \therefore FC is a median of $\triangle BFE$.

So,
$$ar(\Delta CFE) = ar(\Delta BFC) = 3 \text{ cm}^2$$
 ...(iii)

Now,
$$ar(\Delta BDC) = ar(\Delta DFB) + ar(\Delta BFC)$$

=
$$(3 + 3) \text{ cm}^2 = 6 \text{ cm}^2$$
 [From (i) and (ii)]

As we know that diagonal of a parallelogram divides it into two congruent triangles.

∴ Area of parallelogram *ABCD*

=
$$2 \times \text{Area of } \Delta BDC = (2 \times 6) \text{ cm}^2 = 12 \text{ cm}^2$$

Thus, the area of parallelogram ABCD is 12 cm².

22. Given,
$$ar(\parallel^{gm}PQRS) = ar(\parallel^{gm}PABC)$$

$$\Rightarrow ar(||^{gm}PQRS) - ar(||^{gm}QOCP)$$

$$= ar (||gm PABC) - ar (||gm QOCP)$$

$$\Rightarrow ar(\parallel^{gm} ORSC) = ar(\parallel^{gm} ABOQ)$$

⇒ $2ar (\triangle ORC) = 2 \times ar (\triangle OBQ)$ [: Diagonal of a parallelogram divides it into two congruent triangles]

$$\Rightarrow$$
 ar $(\triangle ORC) = ar (\triangle OBQ)$

$$\Rightarrow ar(\Delta ORC) + ar(\Delta OBR) = ar(\Delta OBQ) + ar(\Delta OBR)$$

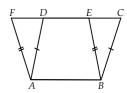
$$\Rightarrow$$
 ar $(\Delta BRC) = ar (\Delta BRQ)$.

Now, $\triangle BRC$ and $\triangle BRQ$ lie on the same base BR and equal in area, so they must be between the same parallels.

$$\therefore QC \parallel BR.$$

Hence proved.

23. Given:Two parallelograms *ABCD* and *ABEF*, which have the same base *AB* and are between the same parallel lines *AB* and *FC*.



To prove : $ar(||^{gm} ABCD) = ar(||^{gm} ABEF)$

Proof: In $\triangle ADF$ and $\triangle BCE$, we have

 $\angle ADF = \angle BCE$ (Corresponding angles from $AD \parallel BC$ and transversal FC)

 $\angle AFD = \angle BEC$ (Corresponding angles from $AF \parallel BE$ and transversal FC)

$$\Rightarrow$$
 $\angle DAF = \angle CBE$ (By angle sum property of triangle) ...(i)

Also, we have AD = BC [: ABCD is a \parallel^{gm} and opposite sides of a parallelogram are equal] ...(ii)

and AF = BE [: ABEF is a \parallel^{gm} and opposite sides of a parallelogram are equal] ...(iii)

Now, from (i), (ii) and (iii), we get

$$\triangle ADF \cong \triangle BCE$$
 (By SAS congruence criteria)

$$\Rightarrow ar(\Delta ADF) = ar(\Delta BCE)$$
 ...(iv)

[Areas of congruent figures are equal]

Now,
$$ar(||^{gm} ABCD) = ar(quad. ABED) + ar(\Delta BCE)$$

=
$$ar$$
 (quad. $ABED$) + ar ($\triangle ADF$) [Using (iv)]
= ar ($\parallel^{gm} ABEF$)

Thus,
$$ar(\|^{gm} ABCD) = ar(\|^{gm} ABEF)$$

Hence proved.

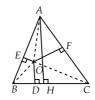
24. Let ABC is an equilateral triangle. O is any point in the interior of the triangle and perpendiculars OD, OE and OF are drawn from O to the sides BC, BA and AC respectively of the $\triangle ABC$.

Join *OA*, *OB*, *OC* and draw $AH \perp BC$.

Now,
$$ar(\Delta AOB) = \frac{1}{2}(AB)(OE)$$

$$=\frac{1}{2}(BC)(OE) \qquad (\because AB = BC)$$

$$ar(\Delta BOC) = \frac{1}{2}(BC)(OD)$$



and
$$ar(\Delta AOC) = \frac{1}{2}(AC)(OF) = \frac{1}{2}(BC)(OF)$$
 ...(iii)
 $(:AC = BC)$

Adding (i), (ii) and (iii) we get

$$ar(\Delta AOB) + ar(BOC) + ar(\Delta AOC) = \frac{1}{2}BC(OE + OD + OF)$$

$$\Rightarrow ar(\Delta ABC) = \frac{1}{2}BC (OE + OD + OF)$$

$$\Rightarrow \frac{1}{2}(BC)(AH) = \frac{1}{2}(BC)(OE + OD + OF)$$

(i)
$$\Rightarrow$$
 AH = OE + OD + OF

$$\Rightarrow$$
 OD + OE + OF = AH, which is constant for a given $\triangle ABC$.

MtG BEST SELLING BOOKS FOR CLASS 9

