Real Numbers

SOLUTIONS

Let n = 5q + 1, where q is a positive integer 1. Squaring both sides, we get $n^2 = (5q + 1)^2 = 25q^2 + 10q + 1$ $= 5(5q^2 + 2q) + 1 = 5m + 1,$ where $m = 5q^2 + 2q$ is an integer Hence, the square of any positive integer of the form 5q + 1 is of the same form. On dividing n by 3, let q be the quotient and r be the 2. remainder. Then, by Euclid's division lemma, n = 3q + r, where $0 \le r < 3$ \Rightarrow n = 3q or n = 3q + 1 or n = 3q + 2**Case I :** If n = 3q, which is divisible by 3 but (n + 1) and (n + 2) are not divisible by 3. So, in this case, only *n* is divisible by 3. **Case II :** If *n* = 3*q* + 1, then *n* + 2 = 3*q* + 3 6. = 3(q + 1) which is divisible by 3 but n and (n + 1) are not divisible by 3. So, in this case, only (n + 2) is divisible by 3. **Case III :** If *n* = 3*q* + 2, then *n* + 1 = 3*q* + 3 = 3(q + 1) which is divisible by 3 but n and (n + 2) are not divisible by 3. So, in this case, only (n + 1) is divisible by 3. Thus, one and only one out of n, (n + 1) and (n + 2) is divisible by 3. 3. Here, 250 > 30 Applying Euclid's division lemma, we get :... $250 = 30 \times 8 + 10$ Since, remainder, $10 \neq 0$ Applying Euclid's division lemma to 30 and 10, we get $30 = 10 \times 3 + 0$ Since, remainder is 0, when divisor is 10 By Euclid's division algorithm, HCF (250, 30) = 10 4. The required number of soaps in each box is HCF of 612 and 342. By Euclid's division algorithm, we have $612 = 342 \times 1 + 270$, $342 = 270 \times 1 + 72$ $270 = 72 \times 3 + 54$ $72 = 54 \times 1 + 18$, $54 = 18 \times 3 + 0$ Here, remainder is 0, when divisor is 18

A TRY YOURSELF

:. HCF (612, 342) is 18

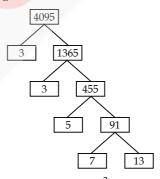
So, the trader can pack 18 soaps in each box.

- 5. Given numbers are 1305, 1365 and 1530
- ·: 1530 > 1365 > 1305
- ... By applying Euclid's division lemma to 1530 and 1365, we get 1530 = 1365 × 1 + 165, 1365 = 165 × 8 + 45, 165 = 45 × 3 + 30, 45 = 30 × 1 + 15, 30 = 15 × 2 + 0 Since, remainder is 0 when divisor is 15 \therefore HCF (1530, 1365) is 15 Now, applying Euclid's division lemma to 1305 and 15, we get 1305 = 15 × 87 + 0 Since, remainder is 0, when divisor is 15 \therefore HCF (1305, 15) is 15

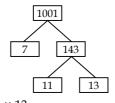
CHAPTER

Hence, HCF of 1305, 1365 and 1530 is 15.

6. (i) Using factor tree method, we have



- $\therefore \quad 4095 = 3 \times 3 \times 5 \times 7 \times 13 = 3^2 \times 5 \times 7 \times 13$
- (ii) Using factor tree method, we have



- $\therefore \quad 1001 = 7 \times 11 \times 13$
- 7. We have, 9 × 13 × 17 + 17

= $17(9 \times 13 + 1) = 17(117 + 1) = 17 \times 118$, which is not a prime number because it has 17 as a factor other than 1 and the number itself.

 \therefore 9 × 13 × 17 + 17 is a composite number.

Also, we have $5 \times 6 \times 7 \times 8 \times 9 + 7 = 7(5 \times 6 \times 8 \times 9 + 1)$, which is again not a prime number because it has 7 as a factor other than 1 and the number itself.

 \therefore 5 × 6 × 7 × 8 × 9 + 7 is a composite number.

MtG 100 PERCENT Mathematics Class-10

8. If any number ends with the digit 0 or 5, it is always divisible by 5.

If 12^n ends with the digit zero or five, it must be divisible by 5.

This is possible only if prime factorisation of 12^n contains the prime number 5.

Now, $12 = 2 \times 2 \times 3 = 2^2 \times 3$ $\Rightarrow \quad 12^n = (2^2 \times 3)^n = 2^{2n} \times 3^n$

Since, there is no term containing 5.

Hence, there is no value of *n* for which 12^n ends with the digit zero or five.

9. The prime factorisation of 144, 180 and 192 is, $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2$ $180 = 2 \times 2 \times 3 \times 3 \times 5 = 2^2 \times 3^2 \times 5$ $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 = 2^6 \times 3$ \therefore HCF (144, 180, 192) = $2^2 \times 3 = 12$ and LCM (144, 180, 192) = $2^6 \times 3^2 \times 5 = 2880$

10. Since, the books are to be distributed equally among the students of section *A* or section *B*.

So, number of books must be a multiple of 32 as well as 36

:. Required number of books is the LCM of 32 and 36 Prime factorisation of 32 and 36 is

 $32 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^{5}$ $36 = 2 \times 2 \times 3 \times 3 = 2^{2} \times 3^{2}$

 $\therefore \text{ LCM of 32 and 36 is } 2^5 \times 3^2 = 288$

Hence, required number of books is 288.

11. Given, HCF (*a*, *b*) = 11 Product of *a* and *b* = 7623

 $\therefore \quad \text{LCM}(a, b) = \frac{\text{Product of } a \text{ and } b}{\text{HCF}(a, b)}$

$$\Rightarrow$$
 LCM (*a*, *b*) = $\frac{7623}{11}$ = 693

12. Given HCF (2520, 6600) = 120

LCM (2520, 6600) = $252 \times k$

Now, HCF (2520, 6600) × LCM (2520, 6600) = 2520 × 6600 \Rightarrow (120) × (252 × k) = 2520 × 6600

$$\Rightarrow k = \frac{2520 \times 6600}{252 \times 120} = 550$$

13. We know that HCF $(a, b) \times LCM(a, b) =$ product of *a* and *b*

 \Rightarrow 12 × LCM (*a*, *b*) = 1152

$$\Rightarrow \text{ LCM } (a, b) = \frac{1152}{12} = 96$$

14. Given, $x = p^2 q^3$, $y = p^3 q$, where *p* and *q* are primes. LCM $(x, y) = p^3 q^3$ HCF $(x, y) = p^2 q$ Now, LCM $(x, y) = p^3 q^3 = pq^2 p^2 q = pq^2 \times$ HCF (x, y)

: LCM is a multiple of HCF.

15. Let us assume that $\sqrt{3}$ is rational So, we can find integers *a* and *b* ($b \neq 0$ and *a*, *b* are coprime) such that

$$\sqrt{3} = \frac{a}{b} \Rightarrow \sqrt{3}b = a$$

$$\Rightarrow 3b^2 = a^2 \qquad [Squaring both sides]$$

$$\therefore 3 \text{ divides } a^2 \Rightarrow 3 \text{ divides } a \qquad ...(ii)$$
So, we can write $a = 3m$, where m is an integer
Putting $a = 3m$ in (i), we get
 $3b^2 = 9m^2 \Rightarrow b^2 = 3m^2$

$$\therefore 3 \text{ divides } b^2 \Rightarrow 3 \text{ divides } b \qquad ...(iii)$$
From (ii) and (iii), 3 is a common factor of a and b , which contradicts the fact that a and b are co-prime.

 \therefore Our assumption that $\sqrt{3}$ is rational is wrong. Hence, $\sqrt{3}$ is irrational.

16. Let us assume that $3 + \sqrt{2}$ is rational.

So, we can find two integers *a* and *b* ($b \neq 0$ and *a*, *b* are co-prime)

such that
$$3 + \sqrt{2} = \frac{a}{b}$$
, $\Rightarrow \sqrt{2} = \frac{a}{b} - 3 = \frac{a - 3b}{b}$
Here, $\frac{a - 3b}{b}$ is rational [:: *a* and *b* are integers]

 $\Rightarrow \sqrt{2}$ is rational, which contradicts the fact that $\sqrt{2}$ is irrational

... Our supposition is wrong.

Hence, $3 + \sqrt{2}$ is irrational.

17. We have a rational number 23.3408, whose decimal expansion terminates.

Now, 23.3408 =
$$\frac{233408}{10000} = \frac{233408}{10^4} = \frac{2^6 \times 7 \times 521}{2^4 \times 5^4}$$

= $\frac{2^2 \times 7 \times 521}{5^4} = \frac{14588}{2^0 \times 5^4}$

Thus, 23.3408 can be expressed as $\frac{14588}{2^0 \times 5^4}$, where numerator and denominator are co-prime and denominator is of the form $2^m \times 5^n$, where *m*, *n* are non-negative integers.

$$2^{2} \times 15^{3} = 2^{2} \times (5 \times 3)^{3} = 2^{2} \times 5^{3} \times 3^{3}$$

$$\therefore \qquad \frac{129}{2^{2} \times 5^{3} \times 3^{3}} \text{ will be a non-terminating repeating}$$

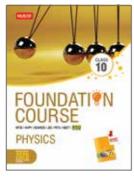
decimal expansion because it contain 3 as a factor in its denominator.

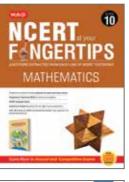
19. As, we need only 10 as denominator, so we multiply 1 ... 3

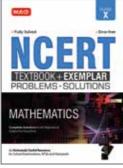
$$\frac{1}{3}$$
 with $\frac{1}{10}$
: $\frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = 0.1$

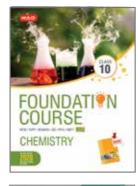
Mtg BEST SELLING BOOKS FOR CLASS 10

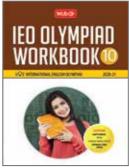


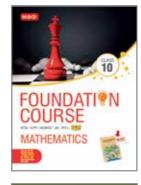


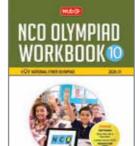


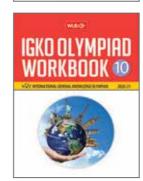


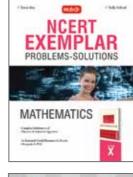


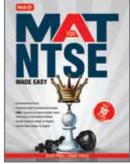


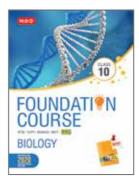


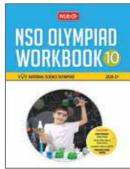


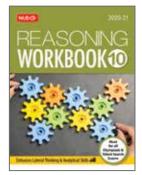












Visit www.mtg.in for complete information