CHAPTER **5**

Arithmetic Progressions

SOLUTIONS

EXERCISE - 5.1

- **1.** (i) Let us consider, first term, a_1 = Fare for the first 1 km = ₹ 15 since, the taxi fare after the first 1 km is ₹ 8 for each additional km.
- \therefore Fare for 2 km = ₹15 + ₹8 = ₹23

We see that fare for each km forms an A.P., with common difference 8.

- (ii) Let the amount of air in the cylinder = x
- \therefore Air removed in 1st stroke = x / 4
- $\Rightarrow \text{ Air left after } 1^{\text{st}} \text{ stroke} = x \frac{x}{4} = \frac{3x}{4}$ Air left after 2^{nd} stroke

$$= \frac{3x}{4} - \frac{1}{4} \left(\frac{3x}{4} \right) = \frac{3x}{4} - \frac{3x}{16} = \frac{9x}{16}$$

Air left after 3rd stroke

$$= \frac{9x}{16} - \frac{1}{4} \left(\frac{9x}{16} \right) = \frac{9x}{16} - \frac{9x}{64} = \frac{27x}{64}$$

Air left after 4th stroke

$$= \frac{27x}{64} - \frac{1}{4} \left(\frac{27x}{64} \right) = \frac{27x}{64} - \frac{27x}{256} = \frac{81x}{256}$$

Thus, the terms are x, $\frac{3x}{4}$, $\frac{9x}{16}$, $\frac{27x}{64}$, $\frac{81}{256}x$

Here,
$$\frac{3x}{4} - x = \frac{-x}{4}, \frac{9x}{16} - \frac{3x}{4} = \frac{-3x}{16}$$

Since,
$$\left(\frac{-x}{4}\right) \neq \left(\frac{-3x}{16}\right)$$
.

The above terms are not in A.P.

- (iii) Here, the cost of digging for first 1 metre = ₹ 150
- The cost of digging for first 2 metres

The cost of digging for first 3 metres

$$=$$
 ₹ 200 + ₹ 50 $=$ ₹ 250 $=$ ₹ 150 + 2 × (₹ 50)

The cost of digging for first 4 metres

We see that the cost of digging a well for each subsequent metre form an A.P., with common difference = 50.

(iv) ∵ The amount at the end of 1st year

$$=10000\left(1+\frac{8}{100}\right)^{1}$$

The amount at the end of 2^{nd} year = $10000 \left(1 + \frac{8}{100} \right)^2$

The amount at the end of 3rd year = $10000 \left(1 + \frac{8}{100}\right)^3$

The amount at the end of 4th year = $10000 \left(1 + \frac{8}{100}\right)^4$

:. The terms are [10000], $10000 \left(1 + \frac{8}{100}\right)$,

$$\left[10000\left(1+\frac{8}{100}\right)^{2}\right], \left[10000\left(1+\frac{8}{100}\right)^{3}\right], \dots$$

Obviously, $\left[10000\left(1 + \frac{8}{100}\right)\right] - [10000]$

$$\neq \left[10000\left(1 + \frac{8}{100}\right)^2\right] - \left[10000\left(1 + \frac{8}{100}\right)\right]$$

- : The above terms are not in A.P.
- 2. (i) Here, a = 10 and d = 10

We have, first term, $a = a_1 = 10$

Second term, $a_2 = 10 + 10 = 20$

Third term, $a_3 = 20 + 10 = 30$ and

Fourth term, $a_4 = 30 + 10 = 40$

Thus, the first four terms are 10, 20, 30 and 40.

(ii) Here, a = -2 and d = 0, we have

Since, d = 0, so each term of given A.P. will be same as the first term of the A.P.

Thus, the first four terms of the A.P. are -2, -2, -2 and -2.

- (iii) Here, a = 4 and d = -3,
- We have, first term, $a = a_1 = 4$
- Second term, $a_2 = 4 + (-3) = 1$

Third term, $a_3 = 1 + (-3) = -2$ and

Fourth term, $a_4 = -2 + (-3) = -5$

Thus, the first four terms are 4, 1, -2 and -5.

(iv) Here, a = -1 and d = 1/2

We have, first term, $a = a_1 = -1$,

Second term, $a_2 = -1 + \frac{1}{2} = -\frac{1}{2}$,

Third term, $a_3 = -\frac{1}{2} + \frac{1}{2} = 0$ and

Fourth term, $a_4 = 0 + \frac{1}{2} = \frac{1}{2}$

- \therefore Thus, the first four terms are -1, $-\frac{1}{2}$, 0 and $\frac{1}{2}$.
- (v) Here, a = -1.25 and d = -0.25

We have, first term, $a = a_1 = -1.25$

Second term, $a_2 = -1.25 + (-0.25) = -1.50$,

Third term, $a_3 = -1.50 + (-0.25) = -1.75$ and

Fourth term, $a_4 = -1.75 + (-0.25) = -2.0$

Thus, the first four terms are -1.25, -1.50, -1.75 and -2.0.

3. (i) We have ; 3, 1, -1, -3, ...

 \therefore $a_1 = 3$ \therefore First term = 3

Also,
$$a_2 = 1$$
, $a_3 = -1$, $a_4 = -3$

$$a_2 - a_1 = 1 - 3 = -2$$

$$a_4 - a_3 = -3 - (-1) = -3 + 1 = -2$$

- \Rightarrow Common difference, d = -2
- (ii) We have ; -5, -1, 3, 7, ...

$$\therefore$$
 $a_1 = -5$ \therefore First term = -5

Also,
$$a_2 = -1$$
, $a_3 = 3$, $a_4 = 7$

$$a_2 - a_1 = -1 - (-5) = -1 + 5 = 4$$

and $a_4 - a_3 = 7 - 3 = 4$ \Rightarrow Common difference, d = 4

(iii) We have;
$$\frac{1}{3}$$
, $\frac{5}{3}$, $\frac{9}{3}$, $\frac{13}{3}$,

$$\therefore$$
 $a_1 = \frac{1}{3}$.. First term = $\frac{1}{3}$

Also,
$$a_2 = \frac{5}{3}$$
, $a_3 = \frac{9}{3}$, $a_4 = \frac{13}{3}$

$$\therefore a_2 - a_1 = \frac{5}{3} - \frac{1}{3} = \frac{4}{3} \text{ and } a_4 - a_3 = \frac{13}{3} - \frac{9}{3} = \frac{4}{3}$$

- \Rightarrow Common difference, d = 4/3
- (iv) We have; 0.6, 1.7, 2.8, 3.9,
- : $a_1 = 0.6$
- \therefore First term = 0.6

Also,
$$a_2 = 1.7$$
, $a_3 = 2.8$, $a_4 = 3.9$

$$\therefore$$
 $a_2 - a_1 = 1.7 - 0.6 = 1.1$

and $a_4 - a_3 = 3.9 - 2.8 = 1.1 \Rightarrow$ Common difference, d = 1.1

4. (i) We have ; 2, 4, 8, 16,

Here,
$$a_1 = 2$$
, $a_2 = 4$, $a_3 = 8$, $a_4 = 16$

$$a_2 - a_1 = 4 - 2 = 2$$
 and $a_4 - a_3 = 16 - 8 = 8$

Since, $a_2 - a_1 \neq a_4 - a_3$

.. The given numbers do not form an A.P.

(ii) We have;
$$2, \frac{5}{2}, 3, \frac{7}{2}, \dots$$

Here,
$$a_1 = 2$$
, $a_2 = \frac{5}{2}$, $a_3 = 3$, $a_4 = \frac{7}{2}$

$$\therefore a_2 - a_1 = \frac{5}{2} - 2 = \frac{1}{2}, \ a_3 - a_2 = 3 - \frac{5}{2} = \frac{1}{2} \text{ and}$$

$$a_4 - a_3 = \frac{7}{2} - 3 = \frac{1}{2}$$

- $a_2 a_1 = a_3 a_2 = a_4 a_3 = \frac{1}{2}$
- \Rightarrow Common difference, d = 1/2
- :. The given numbers form an A.P.

Now,
$$a_5 = \frac{7}{2} + \frac{1}{2} = 4$$
, $a_6 = 4 + \frac{1}{2} = \frac{9}{2}$ and $a_7 = \frac{9}{2} + \frac{1}{2} = 5$

(iii) We have ; -1.2, -3.2, -5.2, -7.2,

Here,
$$a_1 = -1.2$$
, $a_2 = -3.2$, $a_3 = -5.2$, $a_4 = -7.2$

$$\therefore a_2 - a_1 = -3.2 + 1.2 = -2,$$

$$a_3 - a_2 = -5.2 + 3.2 = -2$$
 and $a_4 - a_3 = -7.2 + 5.2 = -2$

- $a_2 a_1 = a_3 a_2 = a_4 a_3 = -2$
- \Rightarrow Common difference, d = -2
- :. The given numbers form an A.P.

Now,
$$a_5 = -7.2 + (-2) = -9.2$$
,

$$a_6 = -9.2 + (-2) = -11.2$$
 and $a_7 = -11.2 + (-2) = -13.2$

Here,
$$a_1 = -10$$
, $a_2 = -6$, $a_3 = -2$, $a_4 = 2$

$$\therefore a_2 - a_1 = -6 + 10 = 4,$$

$$a_3 - a_2 = -2 + 6 = 4$$
 and $a_4 - a_3 = 2 + 2 = 4$

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 4$$

$$\Rightarrow$$
 Common difference, $d = 4$

Now,
$$a_5 = 2 + 4 = 6$$
,

$$a_6 = 6 + 4 = 10$$

and
$$a_7 = 10 + 4 = 14$$

(v) We have;
$$3.3 + \sqrt{2}.3 + 2\sqrt{2}.3 + 3\sqrt{2}...$$

Here,
$$a_1 = 3$$
, $a_2 = 3 + \sqrt{2}$, $a_3 = 3 + 2\sqrt{2}$, $a_4 = 3 + 3\sqrt{2}$

$$a_2 - a_1 = 3 + \sqrt{2} - 3 = \sqrt{2}$$

$$a_3 - a_2 = 3 + 2\sqrt{2} - 3 - \sqrt{2} = \sqrt{2}$$
 and

$$a_4 - a_3 = 3 + 3\sqrt{2} - 3 - 2\sqrt{2} = \sqrt{2}$$

$$\therefore \quad a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \sqrt{2}$$

$$\Rightarrow$$
 Common difference, $d = \sqrt{2}$

∴ The given numbers form an A.P.

Now,
$$a_5 = 3 + 3\sqrt{2} + \sqrt{2} = 3 + 4\sqrt{2}$$
,

$$a_6 = 3 + 4\sqrt{2} + \sqrt{2} = 3 + 5\sqrt{2}$$
 and $a_7 = 3 + 5\sqrt{2} + \sqrt{2} = 3 + 6\sqrt{2}$

(vi) We have; 0.2, 0.22, 0.222, 0.2222,

Here,
$$a_1 = 0.2$$
, $a_2 = 0.22$, $a_3 = 0.222$, $a_4 = 0.2222$

$$a_2 - a_1 = 0.22 - 0.2 = 0.02 \text{ and}$$

$$a_4 - a_3 = 0.2222 - 0.222 = 0.0002$$

Since,
$$a_2 - a_1 \neq a_4 - a_3$$

.. The given numbers do not form an A.P.

Here,
$$a_1 = 0$$
, $a_2 = -4$, $a_3 = -8$, $a_4 = -12$

$$a_2 - a_1 = -4 - 0 = -4$$

$$a_3 - a_2 = -8 + 4 = -4$$

and
$$a_4 - a_3 = -12 + 8 = -4$$

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = -4$$

$$\Rightarrow$$
 Common difference, $d = -4$

Now,
$$a_5 = a_4 + (-4) = -12 + (-4) = -16$$

 $a_6 = a_5 + (-4) = -16 + (-4) = -20$

and
$$a_7 = a_6 + (-4) = -20 + (-4) = -24$$

(viii) We have;
$$-\frac{1}{2}$$
, $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$,

Here,
$$a_1 = a_2 = a_3 = a_4 = -\frac{1}{2}$$

$$a_2 - a_1 = 0$$
, $a_3 - a_2 = 0$, $a_4 - a_3 = 0$

$$\Rightarrow$$
 Common difference, $d = 0$

... The given numbers form an A.P.

Now,
$$a_5 = -\frac{1}{2} + 0 = -\frac{1}{2}$$

$$a_6 = -\frac{1}{2} + 0 = -\frac{1}{2}$$
 and $a_7 = -\frac{1}{2} + 0 = -\frac{1}{2}$

(ix) We have; 1, 3, 9, 27, ...

Here,
$$\begin{cases} a_1 = 1 \\ a_2 = 3 \end{cases} \Rightarrow a_2 - a_1 = 3 - 1 = 2$$

Also,
$$a_3 = 9$$

 $a_4 = 27$ $\Rightarrow a_4 - a_3 = 27 - 9 = 18$

Since, $a_2 - a_1 \neq a_4 - a_3$

:. The given numbers do not form an A.P.

(x) We have ; a, 2a, 3a, 4a,

Here,
$$a_1 = a$$
, $a_2 = 2a$, $a_3 = 3a$, $a_4 = 4a$

$$\therefore a_2 - a_1 = 2a - a = a, a_3 - a_2 = 3a - 2a = a$$

and
$$a_4 - a_3 = 4a - 3a = a$$

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = a_4$$

$$\Rightarrow$$
 Common difference, $d = a$

The given numbers form an A.P.

Now,
$$a_5 = 4a + a = 5a$$
,

$$a_6 = 5a + a = 6a$$
 and $a_7 = 6a + a = 7a$

(xi) We have ; a, a^2 , a^3 , a^4 ,

Here,
$$\begin{cases} a_1 = a \\ a_2 = a^2 \end{cases} \Rightarrow a_2 - a_1 = a^2 - a = a(a-1)$$

Also,
$$\begin{cases} a_3 = a^3 \\ a_4 = a^4 \end{cases} \Rightarrow a_4 - a_3 = a^4 - a^3 = a^3(a-1)$$

Since, $a_2 - a_1 \neq a_4 - a_3$

The given numbers do not form an A.P.

(xii) We have;
$$\sqrt{2}$$
, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$,

$$a_1 = \sqrt{2}$$
, $a_2 = \sqrt{8}$, $a_3 = \sqrt{18}$, $a_4 = \sqrt{32}$

$$a_2 - a_1 = \sqrt{8} - \sqrt{2} = 2\sqrt{2} - \sqrt{2} = \sqrt{2},$$

$$a_3 - a_2 = \sqrt{18} - \sqrt{8} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2},$$

and
$$a_4 - a_3 = \sqrt{32} - \sqrt{18} = 4\sqrt{2} - 3\sqrt{2} = \sqrt{2}$$

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \sqrt{2}$$

$$\Rightarrow$$
 Common difference, $d = \sqrt{2}$

The given numbers form an A.P.

Now,
$$a_5 = 4\sqrt{2} + \sqrt{2} = 5\sqrt{2} = \sqrt{50}$$
,

$$a_6 = 5\sqrt{2} + \sqrt{2} = 6\sqrt{2} = \sqrt{72}$$
 and

$$a_7 = 6\sqrt{2} + \sqrt{2} = 7\sqrt{2} = \sqrt{98}$$

(xiii) We have;
$$\sqrt{3}$$
, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$,

Here,
$$a_1 = \sqrt{3}$$

 $a_2 = \sqrt{6}$ $\Rightarrow a_2 - a_1 = \sqrt{6} - \sqrt{3} = \sqrt{3}(\sqrt{2} - 1)$

(xiii) We have;
$$\sqrt{3}$$
, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$,
Here, $a_1 = \sqrt{3}$ $\Rightarrow a_2 - a_1 = \sqrt{6} - \sqrt{3} = \sqrt{3}(\sqrt{2} - 1)$
Also, $a_3 = \sqrt{9}$ $\Rightarrow a_4 - a_3 = \sqrt{12} - \sqrt{9} = 2\sqrt{3} - 3$ $\Rightarrow \sqrt{3}(2 - \sqrt{3})$
 $a_4 = \sqrt{12}$

:
$$a_2 - a_1 \neq a_4 - a_3$$

The given numbers do not form an A.P.

(xiv) We have ; 1^2 , 3^2 , 5^2 , 7^2 ,

Here,
$$\begin{vmatrix} a_1 = 1^2 = 1 \\ a_2 = 3^2 = 9 \end{vmatrix} \Rightarrow a_2 - a_1 = 9 - 1 = 8$$

Also,
$$a_3 = 5^2 = 25$$

 $a_4 = 7^2 = 49$ $\Rightarrow a_4 - a_3 = 49 - 25 = 24$
Since, $a_2 - a_1 \neq a_4 - a_3$

The given numbers do not form an A.P.

(xv) We have ; 1^2 , 5^2 , 7^2 , 7^3 ,

Here,
$$a_1 = 1^2$$
, $a_2 = 5^2$, $a_3 = 7^2$, $a_4 = 73$

$$\begin{array}{l} \therefore \quad a_2 - a_1 = 25 - 1 = 24, \, a_3 - a_2 = 49 - 25 = 24 \text{ and } a_4 - a_3 \\ = 73 - 7^2 = 73 - 49 = 24 \end{array}$$

$$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 24$$

$$\Rightarrow$$
 Common difference, $d = 24$

The given numbers form an A.P.

Now, $a_5 = 73 + 24 = 97$,

$$a_6 = 97 + 24 = 121$$
 and $a_7 = 121 + 24 = 145$

EXERCISE - 5.2

1. (i)
$$a_n = a + (n-1)d$$

$$\Rightarrow a_8 = 7 + (8 - 1)3 = 7 + 7 \times 3 = 7 + 21$$

$$\therefore a_8 = 28$$

(ii)
$$a_n = a + (n-1)d$$

$$\Rightarrow a_{10} = -18 + (10 - 1)d \Rightarrow 0 = -18 + 9d$$

$$\Rightarrow$$
 9 $d = 18 \Rightarrow d = 18/9 = 2$

$$d = 2$$

(iii)
$$a_n = a + (n-1)d$$

$$\Rightarrow a_{18} = a + (18 - 1) \times (-3) \Rightarrow -5 = a + 17 \times (-3)$$

\Rightarrow -5 = a - 51 \Rightarrow a = -5 + 51 = 46

$$\Rightarrow$$
 $-5 = a - 51 \Rightarrow a = -5 + 51 = 46$

:.
$$a = 46$$

(iv)
$$a_n = a + (n-1)d$$

$$\Rightarrow$$
 3.6 = -18.9 + (n - 1) × 2.5

$$\Rightarrow$$
 $(n-1) \times 2.5 = 3.6 + 18.9$

$$\Rightarrow$$
 $(n-1) \times 2.5 = 22.5 \Rightarrow n-1 = \frac{22.5}{2.5} = 9$

$$\Rightarrow$$
 $n = 9 + 1 = 10$

$$\therefore$$
 $n = 10$

(v)
$$a_n = a + (n-1)d \Rightarrow a_{105} = 3.5 + (105 - 1) \times 0$$

$$\Rightarrow a_{105} = 3.5 + 104 \times 0 \Rightarrow a_{105} = 3.5 + 0 = 3.5$$

$$a_{105} = 3.5$$

2. (i) (c): Here,
$$a = 10$$
, $n = 30$ and $d = 7 - 10 = -3$

$$\therefore a_n = a + (n-1)d$$

$$a_{30} = 10 + (30 - 1) \times (-3)$$
$$= 10 + 29 \times (-3) = 10 - 87 = -77$$

$$= 10 + 29 \times (-3) = 10 - 87 = -7$$
(i) (b) Hore $a = 3, n = 11, and$

(ii) (b): Here,
$$a = -3$$
, $n = 11$ and

$$d = -\frac{1}{2} - (-3) = -\frac{1}{2} + 3 = \frac{5}{2}$$

$$a_n = a + (n-1)d$$

$$\therefore$$
 $a_{11} = -3 + (11 - 1) \times 5/2 = -3 + 25 = 22$

3. (i) Here,
$$a = 2$$
, $a_3 = 26$

Let common difference = d

$$\therefore a_n = a + (n-1)d$$

$$\Rightarrow$$
 $a_3 = 2 + (3 - 1)d$ \Rightarrow $26 = 2 + 2d$

$$\Rightarrow$$
 2d = 26 - 2 = 24 \Rightarrow d = 24/2 = 12

$$\therefore$$
 The missing term = $a + d = 2 + 12 = 14$

(ii) Let the first term = a

and common difference = d

Here,
$$a_2 = 13$$
 and $a_4 = 3$

$$a_2 = a + d = 13$$
, $a_4 = a + 3d = 3$

$$a_4 - a_2 = (a + 3d) - (a + d) = 3 - 13$$

$$\Rightarrow$$
 2d = -10 \Rightarrow d = -10/2 = -5

Now,
$$a + d = 13 \implies a + (-5) = 13$$

$$\Rightarrow$$
 $a = 13 + 5 = 18$

Thus, missing terms are *a* and a + 2d *i.e.*, 18 and 18 + (-10) = 8

(iii) Here,
$$a = 5$$
 and $a_4 = 9\frac{1}{2} = \frac{19}{2}$
since, $a_4 = a + 3d$

$$\Rightarrow \frac{19}{2} = 5 + 3d \Rightarrow 3d = \frac{19}{2} - 5 = \frac{9}{2}$$

$$\Rightarrow d = \frac{9}{2} \div 3 = \frac{9}{2} \times \frac{1}{3} = \frac{3}{2}$$

:. The missing terms are:
$$a_2 = a + d = 5 + \frac{3}{2} = 6\frac{1}{2}$$

and
$$a_3 = a + 2d = 5 + 2\left(\frac{3}{2}\right) = 8$$

(iv) Here,
$$a = -4$$
, $a_6 = 6$

$$a_n = a + (n-1)d$$

$$a_6 = -4 + (6 - 1)d$$

$$\Rightarrow$$
 6 = -4 + 5 d \Rightarrow 5 d = 10 \Rightarrow d = 2

$$a_2 = a + d = -4 + 2 = -2,$$

$$a_3 = a + 2d = -4 + 2(2) = 0,$$

$$a_4 = a + 3d = -4 + 3(2) = 2$$

and
$$a_5 = a + 4d = -4 + 4(2) = 4$$

$$\therefore$$
 The missing terms are – 2, 0, 2 and 4

(v) Here,
$$a_2 = 38$$
 and $a_6 = -22$

$$a_2 = a + d = 38, a_6 = a + 5d = -22$$

$$\Rightarrow a_6 - a_2 = a + 5d - (a + d) = -22 - 38$$

$$\Rightarrow$$
 4 $d = -60 \Rightarrow d = -60/4 = -15$

$$\therefore a + d = 38 \implies a + (-15) = 38$$

$$\Rightarrow$$
 $a = 38 + 15 = 53$

Now,
$$a_3 = a + 2d = 53 + 2(-15) = 53 - 30 = 23$$
,
 $a_4 = a + 3d = 53 + 3(-15) = 53 - 45 = 8$

and
$$a_5 = a + 4d = 53 + 4(-15) = 53 - 60 = -7$$

Thus, missing terms are 53, 23, 8 and -7

4. Let the n^{th} term = 78

Here,
$$a = 3 \Rightarrow a_1 = 3$$
 and $a_2 = 8$

$$d = a_2 - a_1 = 8 - 3 = 5$$

And,
$$a_n = a + (n+1)d$$

$$\Rightarrow$$
 78 = 3 + (n - 1) × 5 \Rightarrow 78 - 3 = (n - 1) × 5

$$\Rightarrow 75 = (n-1) \times 5 \Rightarrow (n-1) = 15 \Rightarrow n = 16$$

Thus, 78 is the 16th term of the given A.P.

5. (i) Here, a = 7, d = 13 - 7 = 6

Let total number of terms be n.

$$a_n = 205$$
. Now, $a_n = a + (n-1) \times d$

$$\Rightarrow$$
 7 + $(n-1) \times 6 = 205$

$$\Rightarrow$$
 $(n-1) \times 6 = 205 - 7 = 198$

$$\therefore$$
 $n = 33 + 1 = 34.$

Thus, the required number of terms is 34.

(ii) Here,
$$a = 18$$
, $d = 15\frac{1}{2} - 18 = \frac{31}{2} - 18 = \frac{-5}{2}$

Let the n^{th} term = -47

$$\therefore a_n = a + (n-1)d$$

$$\Rightarrow -47 = 18 + (n-1) \times \left(-\frac{5}{2}\right)$$

$$\Rightarrow -47 - 18 = (n-1) \times \left(\frac{-5}{2}\right) \Rightarrow -65 = (n-1) \times \left(\frac{-5}{2}\right)$$

$$\Rightarrow n-1 = -65 \times \left(\frac{-2}{5}\right) \Rightarrow n-1 = 26$$

$$\Rightarrow$$
 $n = 26 + 1 = 27$

Thus, the required number of terms is 27.

6. For the given A.P.,

we have
$$a = 11$$
, $d = 8 - 11 = -3$

Let -150 be the n^{th} term of the given A.P.

$$\therefore a_n = a + (n-1)d$$

$$\Rightarrow$$
 -150 = 11 + (n - 1) × (-3) \Rightarrow -150 - 11 = (n - 1) × (-3)

$$\Rightarrow$$
 -161 = $(n-1) \times (-3) \Rightarrow n-1 = \frac{-161}{-3} = \frac{161}{3}$

$$\Rightarrow$$
 $n = \frac{161}{3} + 1 = \frac{164}{3}$, which is a fraction

But, *n* must be a positive integer.

Thus, -150 is not a term of the given A.P.

7. Here, $a_{11} = 38$ and $a_{16} = 73$

If the first term = a and the common difference = d.

Then,
$$a + (11 - 1)d = 38 \Rightarrow a + 10d = 38$$
 ...(i)

and
$$a + (16 - 1)d = 73 \Rightarrow a + 15d = 73$$
 ...(ii)

Subtracting (i) from (ii), we get

$$(a + 15d) - (a + 10d) = 73 - 38$$

$$\Rightarrow$$
 5d = 35 \Rightarrow d = 35/5 = 7

From (i),
$$a + 10(7) = 38$$

$$\Rightarrow a + 70 = 38 \Rightarrow a = 38 - 70 = -32$$

$$a_{31} = -32 + (31 - 1) \times 7$$
$$= -32 + 30 \times 7 = -32 + 210 = 178$$

Thus, the 31st term is 178.

8. Here,
$$n = 50$$
, $a_3 = 12$, $a_n = 106 \implies a_{50} = 106$

If the first term = a and the common difference = d

$$a_3 = a + 2d = 12$$
 ...(i)

$$a_{50} = a + 49d = 106$$
 ...(ii)

Subtracting (i) from (ii), we get

$$\Rightarrow a_{50} - a_3 = a + 49d - (a + 2d) = 106 - 12$$

$$\Rightarrow$$
 47 $d = 94 \Rightarrow d = 94/47 = 2$

From (i), we have a + 2d = 12

$$\Rightarrow$$
 $a + 2(2) = 12 \Rightarrow a = 12 - 4 = 8$

Now,
$$a_{29} = a + (29 - 1)d = 8 + (28) \times 2 = 8 + 56 = 64$$

Thus, the 29th term is 64.

9. Here,
$$a_3 = 4$$
 and $a_9 = -8$

$$\therefore \quad a_n = a + (n-1)d$$

$$\Rightarrow \quad a_3 = a + 2d = 4 \qquad \dots (i)$$

$$a_9 = a + 8d = -8$$
 ...(ii)

Subtracting (i) from (ii), we get

$$(a + 8d) - (a + 2d) = -8 - 4$$

$$\Rightarrow$$
 6 $d = -12 \Rightarrow d = -12/6 = -2$

Now, From (i), we have a + 2d = 4

$$\Rightarrow$$
 $a + 2(-2) = 4 \Rightarrow a = 4 + 4 = 8$

Let the n^{th} term of the A.P. be 0.

$$\therefore a_n = a + (n-1)d = 0$$

$$\Rightarrow$$
 8 + (n - 1) × (-2) = 0 \Rightarrow (n - 1) × (-2) = -8

$$\Rightarrow n-1 = -8/-2 = 4 \Rightarrow n = 4+1 = 5$$

Thus, the 5th term of given A.P. is 0.

10. Let *a* be the first term and *d* the common difference of the given A.P.

Now, using $a_n = a + (n - 1)d$, we have

$$a_{17} = a + 16d$$
, $a_{10} = a + 9d$

According to the question, $a_{10} + 7 = a_{17}$

- \Rightarrow (a+9d)+7=a+16d
- \Rightarrow $a + 9d a 16d = -7 <math>\Rightarrow$ $-7d = -7 \Rightarrow d = 1$

Thus, the common difference is 1.

11. Here, a = 3, d = 15 - 3 = 12

Using $a_n = a + (n - 1)d$, we get

 $a_{54} = a + 53d = 3 + 53 \times 12 = 3 + 636 = 639$

Let a_n be 132 more than its 54th term.

$$\therefore$$
 $a_n = a_{54} + 132 \implies a_n = 639 + 132 = 771$

Now, $a_n = 771 \implies a + (n-1)d = 771$

- \Rightarrow 3 + (n 1) × 12 = 771
- \Rightarrow $(n-1) \times 12 = 771 3 = 768$
- \Rightarrow $(n-1) = 768/12 = 64 <math>\Rightarrow n = 64 + 1 = 65$

Thus, 132 more than 54th term is the 65th term.

- **12.** Let for the 1^{st} A.P., the first term = a
- $a_{100} = a + 99d$

And for the 2^{nd} A.P., the first term = a'

 $\Rightarrow a'_{100} = a' + 99d$

According to the condition, we have a_{100} – a'_{100} = 100

- $\Rightarrow a + 99d (a' + 99d) = 100$
- $\Rightarrow a a' = 100$

Let, $a_{1000} - a'_{1000} = x$

- a + 999d (a' + 999d) = x
- $a a' = x \implies x = 100$
- The difference between their 1000th terms is 100.
- 13. The first three digit number divisible by 7 is 105. The last such three digit number is 994.
- The A.P. is 105, 112, 119,, 994

Here, a = 105 and d = 7

Let *n* be the required number of terms.

- $a_n = a + (n-1)d$
- \Rightarrow 994 = 105 + (n 1) × 7
- \Rightarrow $(n-1) \times 7 = 994 105 = 889$
- \Rightarrow (n-1) = 889/7 = 127
- \Rightarrow n = 127 + 1 = 128

Thus, there are 128 three-digits numbers which are divisible by 7.

14. The multiple of 4 that lie between 10 and 250 are:

12, 16,, 248, which is an A.P.

Here, a = 12 and d = 4

Let the number of terms = n

- Using $a_n = a + (n 1)d$, we get $a_n = 12 + (n-1) \times 4$
- \Rightarrow 248 = 12 + (n 1) × 4 \Rightarrow $(n-1) \times 4 = 248 - 12 = 236$
- \Rightarrow $n-1=236/4=59 \Rightarrow n=59+1=60$

Thus, the required number of terms = 60.

15. For the 1st A.P.

$$a = 63$$
 and $d = 65 - 63 = 2$

$$a_n = a + (n-1)d = 63 + (n-1) \times 2$$

For the 2nd A.P.

$$a = 3$$
 and $d = 10 - 3 = 7$

$$a_n = a + (n-1)d = 3 + (n-1) \times 7$$

Now, according to the question

$$3 + (n-1) \times 7 = 63 + (n-1) \times 2$$

$$\Rightarrow$$
 $(n-1) \times 7 - (n-1) \times 2 = 63 - 3$

- \Rightarrow 7*n* 7 2*n* + 2 = 60
- \Rightarrow 5n 5 = 60 \Rightarrow 5n = 60 + 5 = 65 \Rightarrow n = 65/5 = 13

Thus, the 13th terms of the two given A.P.'s are equal.

16. Let the first term = a and the common difference = d

Using,
$$a_n = a + (n - 1)d$$
, we have $a_3 = a + 2d \Rightarrow a + 2d = 16$...(i)

And $a_7 = a + 6d$, $a_5 = a + 4d$

According to the question, $a_7 - a_5 = 12$

- \Rightarrow (a + 6d) (a + 4d) = 12
- \Rightarrow a + 6d a 4d = 12

$$\Rightarrow$$
 2d = 12 \Rightarrow d = 6 ...(ii)

Now, from (i) and (ii), we have a + 2(6) = 16

- $\Rightarrow a + 12 = 16 \Rightarrow a = 16 12 = 4$
- The required A.P. is 4, [4 + 6], [4 + 2(6)],

$$[4 + 3(6)]$$
, or 4, 10, 16, 22,

17. We have, the last term, l = 253

Here, d = 8 - 3 = 5

Since the n^{th} term from the last term is given by, l - (n-1)d,

- :. We have 20th term from the end
- $= l (20 1) \times 5 = 253 19 \times 5 = 253 95 = 158$
- 18. Let the first term = a and the common difference = d
- Using $a_n = a + (n 1)d$, we get

$$a_4 + a_8 = 24 \implies (a + 3d) + (a + 7d) = 24$$

$$\Rightarrow 2a + 10d = 24 \Rightarrow a + 5d = 12$$
 ...(i)

And $a_6 + a_{10} = 44$

- \Rightarrow (a + 5d) + (a + 9d) = 44
- \Rightarrow 2a + 14d = 44 \Rightarrow a + 7d = 22 ...(ii)

Now, subtracting (i) from (ii), we get

$$(a + 7d) - (a + 5d) = 22 - 12$$

$$\Rightarrow 2d = 10 \Rightarrow d = 5$$
 ...(iii)

- From (i), $a + 5 \times 5 = 12$
- \Rightarrow a = 12 25 = -13

Now, the first three terms of the A.P. are given by a, (a + d), (a + 2d)

- or -13, (-13 + 5), [-13 + 2(5)] or -13, -8, -3.
- **19.** Here, a = ₹ 5000 and d = ₹ 200

Let in the n^{th} year he gets ₹ 7000.

- Using $a_n = a + (n 1)d$, we get $7000 = 5000 + (n - 1) \times 200$
- \Rightarrow $(n-1) \times 200 = 7000 5000 = 2000$
- \Rightarrow $n-1=2000/200=10 \Rightarrow n=10+1=11$

Thus, the income becomes ₹ 7000 in 11 years *i.e.*, in year

- **20.** Here, a = ₹ 5 and d = ₹ 1.75
- In the n^{th} week her savings become $\stackrel{?}{\sim}$ 20.75.
- ∴ $a_n = ₹20.75$
- \therefore Using $a_n = a + (n-1)d$, we have $20.75 = 5 + (n - 1) \times (1.75)$
- \Rightarrow $(n-1) \times 1.75 = 20.75 5 <math>\Rightarrow$ $(n-1) \times 1.75 = 15.75$
- $n 1 = \frac{15.75}{1.75} = 9 \implies n = 9 + 1 = 10$

Thus, the required number of years = 10.

EXERCISE - 5.3

1. (i) Given A.P. is 2, 7, 12,.... to 10 terms. Here, a = 2, d = 7 - 2 = 5, n = 10

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{10} = \frac{10}{2} [2 \times 2 + (10 - 1) \times 5]$$

 $= 5[4 + 9 \times 5] = 5[49] = 245$

Thus, the sum of first 10 terms is 245.

(ii) Given A.P. is – 37, – 33, – 29,...., to 12 terms.

Here
$$a = -37$$
, $d = -33 - (-37) = 4$, $n = 12$

Since,
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$\therefore S_{12} = \frac{12}{2} [2(-37) + (12 - 1) \times 4]$$

$$= 6[-74 + 11 \times 4] = 6[-74 + 44] = 6 \times [-30] = -180$$

Thus, the sum of first 12 terms = -180.

(iii) Given A.P. is 0.6, 1.7, 2.8,..., to 100 terms.

Here,
$$a = 0.6$$
, $d = 1.7 - 0.6 = 1.1$, $n = 100$

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{100} = \frac{100}{2} [2(0.6) + (100 - 1) \times 1.1]$$

$$= 50[1.2 + 99 \times 1.1] = 50[1.2 + 108.9]$$

$$= 50[110.1] = 5505$$

Thus, the sum of first 100 terms is 5505.

(iv) Given A.P. is
$$\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \dots$$
, to 11 terms.

Here,
$$a = \frac{1}{15}$$
, $d = \frac{1}{12} - \frac{1}{15} = \frac{1}{60}$, $n = 11$

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\therefore S_{11} = \frac{11}{2} \left[\left(2 \times \frac{1}{15} \right) + (11 - 1) \times \frac{1}{60} \right]$$

$$= \frac{11}{2} \left[\frac{2}{15} + \frac{1}{6} \right] = \frac{11}{2} \left[\frac{4+5}{30} \right] = \frac{11}{2} \times \frac{9}{30} = \frac{99}{60} = \frac{33}{20}$$

Thus, the sum of first 11 terms = 33/20.

2. (i) The given numbers are: $7,10\frac{1}{2},14,...,84$

Here,
$$a = 7$$
, $d = 10\frac{1}{2} - 7 = 3\frac{1}{2} = \frac{7}{2}$, $l = 84$

Let *n* be the number of terms then, $a_n = a + (n - 1)d$

$$\Rightarrow$$
 84 = 7 + (n-1) × $\frac{7}{2}$ \Rightarrow (n-1) × $\frac{7}{2}$ = 84 - 7 = 77

$$\Rightarrow$$
 $n-1 = 77 \times \frac{2}{7} = 22 \Rightarrow n = 22 + 1 = 23$

Now,
$$S_n = \frac{n}{2}(a+l)$$

$$S_{23} = \frac{23}{2}(7+84) = \frac{23}{2} \times 91 = \frac{2093}{2} = 1046\frac{1}{2}$$

Thus, the required sum is $1046\frac{1}{2}$

(ii) The given numbers are : 34, 32, 30,..., 10 Here, a = 34, d = 32 - 34 = -2, l = 10

Let the number of terms be n.

then,
$$a_n = a + (n - 1)d$$

$$\Rightarrow$$
 10 = 34 + (n - 1) × (-2) \Rightarrow (n - 1) × (-2) = -24

$$\Rightarrow$$
 $n-1=\frac{-24}{-2}=12 \Rightarrow n=13$

Now,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{13} = \frac{13}{2} [68 + 12 \times (-2)] = \frac{13}{2} [68 - 24]$$
$$= \frac{13}{2} [44] = 13 \times 22 = 286$$

Thus, the required sum is 286.

(iii) The given numbers are : - 5, -8, -11,, -230

Here,
$$a = -5$$
, $d = -8 - (-5) = -3$, $l = -230$

Let *n* be the number of terms.

then,
$$a_n = a + (n - 1)d$$

$$\Rightarrow$$
 -230 = -5 + (n - 1) × (-3)

$$\Rightarrow$$
 $(n-1) \times (-3) = -230 + 5 = -225$

$$\Rightarrow n-1 = \frac{-225}{-3} = 75 \Rightarrow n = 75 + 1 = 76$$

Now,
$$S_n = \frac{n}{2}[a+l]$$

So,
$$S_{76} = \frac{76}{2}[(-5) + (-230)] = 38 \times (-235) = -8930.$$

:. The required sum is - 8930.

3. (i) Here,
$$a = 5$$
, $d = 3$ and $a_n = 50 = 1$

$$a_n = a + (n-1)d \implies 50 = 5 + (n-1) \times 3$$

$$\Rightarrow 50 - 5 = (n - 1) \times 3 \Rightarrow (n - 1) \times 3 = 45$$

$$\Rightarrow$$
 $(n-1) = \frac{45}{3} = 15 \Rightarrow n = 15 + 1 = 16$

Now,
$$S_n = \frac{n}{2}(a+l) \implies S_{16} = \frac{16}{2}(5+50) = 8(55) = 440$$

Thus, n = 16 and $S_n = 440$

(ii) Here,
$$a = 7$$
 and $a_{13} = 35 = 1$

$$a_{13} = a + (13 - 1)d \Rightarrow 35 = 7 + (13 - 1)d$$

$$\Rightarrow$$
 35 - 7 = 12d \Rightarrow 28 = 12d \Rightarrow d = $\frac{28}{12} = \frac{7}{3}$

Now,
$$S_n = \frac{n}{2}(a+l)$$

$$\Rightarrow S_{12} = \frac{12}{2}(4+37) = \frac{13}{2} \times 42 = 13 \times 21 = 273$$

Thus,
$$S_{13} = 273$$
 and $d = \frac{7}{3}$

(iii) Here, $a_{12} = 37 = l$ and d = 3

Let the first term of the A.P. be *a*.

Now,
$$a_{12} = a + (12 - 1)d$$

$$\Rightarrow$$
 37 = a + 11 d \Rightarrow 37 = a + 11 \times 3

$$\Rightarrow$$
 37 = $a + 33 \Rightarrow a = 37 - 33 = 4$

Now,
$$S_n = \frac{n}{2}(a+l) \Rightarrow S_{12} = \frac{12}{2}(4+37) = 6 \times (41) = 246$$

Thus, a = 4 and $S_{12} = 246$.

(iv) Here, $a_3 = 15$ and $S_{10} = 125$

Let the first term of the A.P. be a and d be the common difference.

$$\therefore a_3 = a + 2d \implies a + 2d = 15$$
Again, $S_n = \frac{n}{2} [2a + (n-1)d]$

$$\implies S_{10} = \frac{10}{2} [2a + (10-1)d]$$

$$\Rightarrow 125 = 5[2a + 9d] \Rightarrow 2a + 9d = \frac{125}{5} = 25$$

$$\Rightarrow$$
 2a + 9d = 25 ...(ii)

Multiplying (i) by 2 and subtracting (ii) from it we get

Multiplying (i) by 2 and subtracting (ii) from it, we get 2a + 4d - 2a - 9d = 30 - 25

$$\Rightarrow$$
 $-5d = 5 \Rightarrow d = -1$.

$$\therefore$$
 From (i), $a + 2(-1) = 15$

$$\Rightarrow a = 17$$

Now,
$$a_{10} = a + (10 - 1)d = 17 + 9 \times (-1) = 17 - 9 = 8$$

Thus, d = -1 and $a_{10} = 8$

(v) Here, d = 5 and $S_9 = 75$

Let the first term of the A.P. is a.

$$S_9 = \frac{9}{2}[2a + (9 - 1) \times 5] \Rightarrow 75 = \frac{9}{2}[2a + 40]$$

$$\Rightarrow 75 \times \frac{2}{9} = 2a + 40 \Rightarrow \frac{50}{3} = 2a + 40$$

$$\Rightarrow 2a = \frac{50}{3} - 40 = \frac{-70}{3} \Rightarrow a = \frac{-70}{3} \times \frac{1}{2} = \frac{-35}{3}$$
Now, $a_9 = a + (9 - 1)d$

$$= \frac{-35}{3} + (8 \times 5) = \frac{-35}{3} + 40 = \frac{-35 + 120}{3} = \frac{85}{3}$$

Thus,
$$a = \frac{-35}{3}$$
 and $a_9 = \frac{85}{3}$.

(vi) Here,
$$a = 2$$
, $d = 8$ and $S_n = 90$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\therefore 90 = \frac{n}{2} [2 \times 2 + (n-1) \times 8]$$

$$\Rightarrow$$
 90 × 2 = 4n + n(n - 1) × 8 \Rightarrow 180 = 4n + 8n² - 8n

$$\Rightarrow$$
 180 = 8 n^2 - 4 n \Rightarrow 45 = 2 n^2 - n

$$\Rightarrow$$
 $2n^2 - n - 45 = 0 \Rightarrow 2n^2 - 10n + 9n - 45 = 0$

$$\Rightarrow$$
 $2n(n-5) + 9(n-5) = 0 \Rightarrow $(2n+9)(n-5) = 0$$

:. Either,
$$2n + 9 = 0 \implies n = -9/2$$

Or
$$n-5=0 \Rightarrow n=5$$

But
$$n = -\frac{9}{2}$$
 is not possible, so $n = 5$

Now,
$$a_n = a + (n-1)d$$

$$\Rightarrow$$
 $a_5 = 2 + (5 - 1) \times 8 = 2 + 32 = 34$

Thus, n = 5 and $a_5 = 34$

(vii) Here,
$$a = 8$$
, $a_n = 62 = l$ and $S_n = 210$

Let the common difference = d

Now,
$$S_n = \frac{n}{2}(a+l) \implies 210 = \frac{n}{2}(8+62) = \frac{n}{2} \times 70 = 35n$$

$$\therefore n = \frac{210}{35} = 6$$

Again, $a_n = a + (n-1)d$

$$\Rightarrow$$
 62 = 8 + (6 - 1) × d \Rightarrow 62 - 8 = 5d

$$\Rightarrow$$
 54 = 5d \Rightarrow d = $\frac{54}{5}$. Thus, n = 6 and d = $\frac{54}{5}$.

(viii) Here, $a_n = 4$, d = 2 and $S_n = -14$

Let the first term be 'a'.

...(i)
$$a_n = 4$$
 : $a + (n-1)2 = 4 \Rightarrow a = 4 - 2n + 2$
 $\Rightarrow a = 6 - 2n$...(i)

Also,
$$S_n = \frac{n}{2}(a+l) \Rightarrow -14 = \frac{n}{2}(a+4)$$

$$\Rightarrow n(a+4) = -28 \qquad \dots (ii)$$

Substituting the value of *a* from (i) into (ii), we get n[6-2n+4] = -28

$$\Rightarrow n[10 - 2n] = -28 \Rightarrow 2n[5 - n] = -28$$

$$\Rightarrow n(5-n) = -14 \Rightarrow 5n-n^2+14=0$$

$$\Rightarrow n^2 - 5n - 14 = 0 \Rightarrow (n - 7)(n + 2) = 0$$

$$\therefore$$
 Either, $n-7=0 \Rightarrow n=7$

Or
$$n + 2 = 0 \implies n = -2$$

But *n* cannot be negative, so n = 7

Now, from (i), we have $a = 6 - 2 \times 7 \implies a = -8$

Thus, a = -8 and n = 7

(ix) Here, a = 3, n = 8 and $S_n = 192$

Let *d* be the common difference.

$$S_n = \frac{n}{2} [2a + (n-1)d] \quad \therefore \quad 192 = \frac{8}{2} [2(3) + (8-1)d]$$

$$\Rightarrow$$
 192 = 4[6 + 7d] \Rightarrow 192 = 24 + 28d

$$\Rightarrow$$
 28d = 192 - 24= 168 \Rightarrow d = 6

Thus, d = 6.

(x) Here, l = 28 and $S_9 = 144$

Let the first term be 'a'.

Thus
$$S_n = \frac{n}{2}(a+l)$$

$$\Rightarrow$$
 $S_9 = \frac{9}{2}(a+28) \Rightarrow 144 = \frac{9}{2}(a+28)$

$$\Rightarrow$$
 $a + 28 = 144 \times \frac{2}{9} = 16 \times 2 = 32 \Rightarrow a = 32 - 28 = 4$

Thus, a = 4.

4. Here,
$$a = 9$$
, $d = 17 - 9 = 8$ and $S_n = 636$

$$S_n = \frac{n}{2} [2a + (n-1)d] = 636$$

$$\frac{n}{2}[(2\times 9) + (n-1)\times 8] = 636$$

$$\Rightarrow n[18 + (n-1) \times 8] = 1272 \Rightarrow 18n + 8n^2 - 8n = 1272$$

$$\Rightarrow$$
 8n² + 10n = 1272 \Rightarrow 4n² + 5n - 636 = 0

$$\Rightarrow$$
 $4n^2 - 48n + 53n - 636 = 0$

$$\Rightarrow$$
 4n (n - 12) + 53(n - 12) = 0

$$\Rightarrow$$
 $(n-12)(4n+53)=0 \Rightarrow n=12,-53/4$

As *n* can't be negative.

Required number of terms = 12.

5. Here,
$$a = 5$$
, $l = 45 = a_n$, $S_n = 400$

$$a_n = a + (n-1)d$$

$$\therefore$$
 45 = 5 + (n - 1)d

$$\Rightarrow$$
 $(n-1)d = 45 - 5 \Rightarrow (n-1)d = 40$...(i)

Also
$$S_n = \frac{n}{2}(a+l) \Rightarrow 400 = \frac{n}{2}(5+45) \Rightarrow 400 \times 2 = n \times 50$$

$$\Rightarrow n = \frac{400 \times 2}{50} = 16$$

From (i), we get
$$(16 - 1)d = 40 \Rightarrow 15d = 40 \Rightarrow d = 8/3$$

6. We have, first term a = 17, last term, $l = 350 = a_n$ and common difference d = 9

Let the number of terms be n.

$$a_n = a + (n-1)d$$

$$\therefore 350 = 17 + (n-1) \times 9 \Rightarrow (n-1) \times 9 = 350 - 17 = 333$$
$$\Rightarrow n-1 = 333/9 = 37 \Rightarrow n = 37 + 1 = 38$$

Since,
$$S_n = \frac{n}{2}(a+l)$$

$$S_{38} = \frac{38}{2}(17 + 350) = 19(367) = 6973$$

Thus, n = 38 and $S_n = 6973$.

Here, n = 22, $a_{22} = 149 = l$, d = 7

Let the first term of the A.P. be *a*.

$$a_n = a + (n-1)d$$

$$a_{22} = a + (22 - 1) \times 7 \Rightarrow a + 21 \times 7 = 149$$

$$\Rightarrow$$
 $a + 147 = 149 \Rightarrow a = 149 - 147 = 2$

Now,
$$S_{22} = \frac{n}{2}[a+l] \Rightarrow S_{22} = \frac{22}{2}[2+149] = 11[151] = 1661$$

Thus, $S_{22} = 1661$.

Here, n = 51, $a_2 = 14$ and $a_3 = 18$

Let the first term of the A.P. be a and the common difference is d.

We have
$$a_2 = a + d \implies a + d = 14$$
 ...(i

$$a_3 = a + 2d \implies a + 2d = 18$$
 ...(i

Subtracting (i) from (ii), we get

$$a + 2d - a - d = 18 - 14 \implies d = 4$$

From (i), we get

$$a + 4 = 14 \implies a = 14 - 4 = 10$$

Now,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow S_{51} = \frac{51}{2} [(2 \times 10) + (51 - 1) \times 4]$$
$$= \frac{51}{2} [20 + 200] = \frac{51}{2} [220] = 51 \times 110 = 5610$$

Thus, the sum of 51 terms is 5610.

Here, we have $S_7 = 49$ and $S_{17} = 289$ Let the first term of the A.P. be 'a' and 'd' be the common difference, then

$$S_n = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_7 = \frac{7}{2} [2a + (7-1)d] = 49$$

$$\Rightarrow$$
 7(2a + 6d) = 2 × 49 = 98

$$\Rightarrow$$
 2a + 6d = $\frac{98}{7}$ = 14 \Rightarrow 2[a + 3d] = 14

$$\Rightarrow a + 3d = \frac{14}{2} = 7 \Rightarrow a + 3d = 7$$
 ...(i)

Also,
$$S_{17} = \frac{17}{2} [2a + (17 - 1)d] = 289$$

$$\Rightarrow \quad \frac{17}{2}(2a+16d) = 289$$

$$\Rightarrow a + 8d = \frac{289}{17} = 17 \Rightarrow a + 8d = 17$$
 ...(ii)

Subtracting (i) from (ii), we have

$$a + 8d - a - 3d = 17 - 7$$

$$\Rightarrow$$
 5d = 10 \Rightarrow d = 2

Now, from (i), we have

$$a + 3(2) = 7 \implies a = 7 - 6 = 1$$

Now,
$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [2 \times 1 + (n-1) \times 2]$$

= $\frac{n}{2} [2 + 2n - 2] = \frac{n}{2} [2n] = n \times n = n^2$

Thus, the required sum of *n* terms = n^2 .

10. (i) Here, $a_n = 3 + 4n$

Putting n = 1, 2, 3, 4,, n, we get

$$a_1 = 3 + 4(1) = 7$$

$$a_2 = 3 + 4(2) = 11$$

$$a_3 = 3 + 4(3) = 15$$

$$a_4 = 3 + 4(4) = 19$$

$$a_n = 3 + 4n$$

The A.P. in which a = 7 and d = 11 - 7 = 4 is 7, 11, 15, $19, \ldots, (3 + 4n).$

Now,
$$S_{15} = \frac{15}{2}[(2 \times 7) + (15 - 1) \times 4]$$

$$=\frac{15}{2}[14+(14\times4)]=\frac{15}{2}[14+56]=\frac{15}{2}[70]$$

$$= 15 \times 35 = 525$$

(ii) Here, $a_n = 9 - 5n$

Putting n = 1, 2, 3, 4,, n, we get

$$a_1 = 9 - 5(1) = 4$$

$$a_2 = 9 - 5(2) = -1$$

$$a_3 = 9 - 5(3) = -6$$

$$a_4 = 9 - 5(4) = -11$$

$$a_n = 9 - 5n$$

The A.P. is 4, -1, -6, -11,, 9 - 5n having first term as 4 and d = -1 - 4 = -5

$$S_{15} = \frac{15}{2} [(2 \times 4) + (15 - 1) \times (-5)]$$

$$= \frac{15}{2} [8 + 14 \times (-5)] = \frac{15}{2} [8 - 70] = \frac{15}{2} \times (-62)$$

$$= 15 \times (-31) = -465.$$

11. We have $S_n = 4n - n^2$

$$S_1 = 4(1) - (1)^2 = 4 - 1 = 3 \implies \text{First term} = 3$$

$$S_2 = 4(2) - (2)^2 = 8 - 4 = 4$$

 \Rightarrow Sum of first two terms = 4

$$\therefore$$
 Second term $(S_2 - S_1) = 4 - 3 = 1$
 $S_3 = 4(3) - (3)^2 = 12 - 9 = 3$

 \Rightarrow Sum of first 3 terms = 3

Third term
$$(S_3 - S_2) = 3 - 4 = -1$$

$$S_9 = 4(9) - (9)^2 = 36 - 81 = -45$$

$$S_{10} = 4(10) - (10)^2 = 40 - 100 = -60$$

$$\therefore$$
 Tenth term = $S_{10} - S_9 = [-60] - [-45] = -15$

Now,
$$S_n = 4(n) - (n)^2 = 4n - n^2$$

Also,
$$S_{n-1} = 4(n-1) - (n-1)^2$$

$$= 4n - 4 - [n^2 - 2n + 1]$$

= 4n - 4 - n² + 2n - 1 = 6n - n² - 5

$$n^{\text{th}} \text{ term} = S_n - S_{n-1} = [4n - n^2] - [6n - n^2 - 5]$$
$$= 4n - n^2 - 6n + n^2 + 5 = 5 - 2n$$

Thus,
$$S_1 = 3$$
 and $a_1 = 3$
 $S_2 = 4$ and $a_2 = 1$
 $S_3 = 3$ and $a_3 = -1$
 $a_{10} = -15$ and $a_n = 5 - 2n$

12. : The first 40 positive integers divisible by 6 are 6, $12, 18, \dots, (6 \times 40)$

And, these numbers are in A.P., such that a = 6d = 12 - 6 = 6 and $a_{40} = 6 \times 40 = 240 = l$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_{40} = \frac{40}{2}[(2 \times 6) + (40 - 1) \times 6]$$

$$= 20[12 + 39 \times 6] = 20[12 + 234]$$

$$= 20 \times 246 = 4920$$

13. The first 15 multiples of 8 are 8, (8×2) , (8×3) , (8 × 4),, (8 × 15) or 8, 16, 24, 32,, 120.

These number are in A.P., where a = 8 and l = 120

$$S_{15} = \frac{15}{2}[a+l] = \frac{15}{2}[8+120]$$

$$= \frac{15}{2} \times 128 = 15 \times 64 = 960$$
Thus, the sum of first 15 multiples of 8 is 960.

14. Odd numbers between 0 and 50 are 1, 3, 5, 7,, 49. These numbers are in A.P. such that a = 1 and l = 49

Here,
$$d = 3 - 1 = 2$$
 : $a_n = a + (n - 1)d$

$$\Rightarrow$$
 49 = 1 + (n - 1)2 \Rightarrow 49 - 1 = (n - 1)2

$$\Rightarrow$$
 $(n-1) = \frac{48}{2} = 24$: $n = 24 + 1 = 25$

Now,
$$S_{25} = \frac{25}{2}[1+49] = \frac{25}{2}[50] = 25 \times 25 = 625$$

Thus, the sum of odd numbers between 0 and 50 is 625.

15. Here, penalty for delay on

$$2^{nd} day = ₹ 250$$

Now, 200, 250, 300, are in A.P. such that a = 200, d = 250 - 200 = 50

 S_{30} is given by $S_{30} = \frac{30}{2} [2(200) + (30 - 1) \times 50]$

Using
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$= 15[400 + 29 \times 50] = 15[400 + 1450]$$

= $15 \times 1850 = 27750$

Thus, penalty for the delay for 30 days is ₹ 27750.

16. Sum of all the prizes = ₹ 700

Let the first prize = a

:
$$2^{\text{nd}} \text{ prize} = (a - 20)$$

 $3^{\text{rd}} \text{ prize} = (a - 40)$

 4^{th} prize = (a - 60)

Thus, we have, first term = aCommon difference = -20

Sum of 7 terms, $S_7 = 700$

Since,
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$\Rightarrow 700 = \frac{7}{2} [2(a) + (7-1) \times (-20)]$$

$$\Rightarrow 700 = \frac{7}{2} [2a + 6 \times (-20)] \Rightarrow 700 \times \frac{2}{7} = 2a - 120$$

$$\Rightarrow$$
 200 = 2a - 120 \Rightarrow 2a = 320 \Rightarrow a = 320/2 = 160

Thus, the values of the seven prizes are ₹ 160, ₹(160 – 20), ₹(160 - 40), ₹(160 - 60), ₹(160 - 80), ₹(160 - 100) and ₹(160 – 120) = ₹160, ₹140, ₹120, ₹100, ₹80, ₹60 and ₹40.

17. Number of classes = 12

Each class has 3 sections.

 \therefore Number of plants planted by class I = 1 × 3 = 3

Number of plants planted by class II = $2 \times 3 = 6$

Number of plants planted by class III = $3 \times 3 = 9$

Number of plants planted by class IV = $4 \times 3 = 12$

Number of plants planted by class XII = $12 \times 3 = 36$ Thus, the numbers 3, 6, 9, 12,, 36 are in A.P. Here, a = 3 and d = 6 - 3 = 3

Number of classes = 12 i.e., n = 12

Sum the n terms of the above A.P., is given by

$$S_{12} = \frac{12}{2} [2(3) + (12 - 1)3] \left[\text{Using } S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$
$$= 6[6 + 11 \times 3] = 6[6 + 33] = 6 \times 39 = 234$$

Thus, the total number of trees = 234.

18. Length of a semi-circle = Semi-circumference

$$=\frac{1}{2}(2\pi r)=\pi r$$

$$l_1 = \pi r_1 = 0.5 \pi \text{ cm} = 1 \times 0.5 \pi \text{ cm}$$

$$l_2 = \pi r_2 = 1.0 \pi \text{ cm} = 2 \times 0.5 \pi \text{ cm}$$

$$l_3 = \pi r_3 = 1.5 \pi \text{ cm} = 3 \times 0.5 \pi \text{ cm}$$

$$l_4 = \pi r_4 = 2.0 \pi \text{ cm} = 4 \times 0.5 \pi \text{ cm}$$

 $l_{13} = \pi r_{13}$ cm = 6.5 π cm = 13 × 0.5 π cm

Now, length of the spiral = $l_1 + l_2 + l_3 + l_4 + \dots + l_{13}$ $= 0.5\pi[1 + 2 + 3 + 4 + \dots + 13]$ cm

1, 2, 3, 4,, 13 are in A.P. such that a = 1 and l = 13

$$S_{13} = \frac{13}{2} [1+13] \quad \left[\text{Using } S_n = \frac{n}{2} (a+l) \right]$$
$$= \frac{13}{2} \times 14 = 13 \times 7 = 91$$

∴ From (i), we have

Total length of the spiral = $0.5\pi[91]$ cm

$$=\frac{5}{10} \times \frac{22}{7} \times 91 \text{ cm} = 11 \times 13 \text{ cm} = 143 \text{ cm}$$

19. The number of logs in

 1^{st} row = 20, 2^{nd} row = 19 and 3^{rd} row = 18

Obviously, the numbers 20, 19, 18,, are in A.P., such

that a = 20, d = 19 - 20 = -1

Let the number of rows be n.

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow 200 = \frac{n}{2}[2(20) + (n-1) \times (-1)] \Rightarrow 200 = \frac{n}{2}[40 - (n-1)]$$

$$\Rightarrow 200 = \frac{n}{2} [40 - (n-1)]$$

$$\Rightarrow$$
 2 × 200 = n × 40 - n(n - 1)

$$\Rightarrow$$
 400 = 40n - n² + n \Rightarrow n² - 41n + 400 = 0

$$\Rightarrow$$
 $n^2 - 16n - 25n + 400 = 0$

$$\Rightarrow$$
 $n(n-16) - 25(n-16) = 0$

$$\Rightarrow$$
 $(n-16)(n-25)=0$

Either $n - 16 = 0 \implies n = 16$

Or
$$n - 25 = 0 \implies n = 25$$

$$a_n = 0 \implies a + (n-1)d = 0$$

$$\Rightarrow$$
 20 + (n - 1) × (-1) = 0 \Rightarrow n - 1 = 20

$$\Rightarrow$$
 $n = 21$ *i.e.*, 21^{st} term becomes 0

$$\therefore$$
 $n = 25$ is not required.

$$\therefore$$
 Number of rows = 16

Now,
$$a_{16} = a + (16 - 1)d = 20 + 15 \times (-1) = 20 - 15 = 5$$

:. Number of logs in the 16th (top) row is 5.

20. Here, number of potatoes = 10

The up-down distance of the bucket:

From the 1^{st} potato = $[5m] \times 2 = 10 \text{ m}$

From the
$$2^{nd}$$
 potato = $[(5 + 3)m] \times 2 = 16 \text{ m}$

From the
$$3^{rd}$$
 potato = $[(5 + 3 + 3)m] \times 2 = 22 m$

From the 4th potato =
$$[(5 + 3 + 3 + 3)m] \times 2 = 28 \text{ m}$$

∴ 10, 16, 22, 28, are in A.P. such that

$$a = 10$$
 and $d = 16 - 10 = 6$

$$\therefore \quad \text{Using } S_n = \frac{n}{2} [2a + (n-1)d], \text{ we have}$$

$$S_{10} = \frac{10}{2} [2(10) + (10 - 1) \times 6] = 5[20 + 54] = 5 \times 74 = 370$$

Thus, the sum of above distance = 370 m.

⇒ The competitor has to run a total distance of 370 m.

EXERCISE - 5.4

1. We have the A.P. having a = 121 and d = 117 - 121 = -4

Now,
$$a_n = a + (n-1)d = 121 + (n-1) \times (-4)$$

= 121 - 4n + 4 = 125 - 4n

For the first negative term, we have $a_n < 0$

$$\Rightarrow$$
 $(125 - 4n) < 0 $\Rightarrow 125 < 4n$$

$$\Rightarrow \frac{125}{4} < n \Rightarrow 31\frac{1}{4} < n \text{ or } n > 31\frac{1}{4}$$

Thus, the first negative term is 32nd term.

2. Here, $a_3 + a_7 = 6$ and $a_3 \times a_7 = 8$

Let the first term = a and the common difference = d

$$a_3 = a + 2d \text{ and } a_7 = a + 6d$$

$$a_3 + a_7 = 6$$

$$(a + 2d) + (a + 6d) = 6$$

$$\Rightarrow$$
 2a + 8d = 6 \Rightarrow a + 4d = 3 ...(i)

Again, $a_3 \times a_7 = 8$

$$\therefore (a+2d) \times (a+6d) = 8$$

$$\Rightarrow [(a + 4d) - 2d] \times [(a + 4d) + 2d] = 8$$

$$\Rightarrow (3-2d) \times (3+2d) = 8$$
 [Using (i)]

$$\Rightarrow$$
 $3^2 - (2d)^2 = 8 \Rightarrow 9 - 4d^2 = 8$

$$\Rightarrow -4d^2 = 8 - 9 = -1$$

$$\Rightarrow d^2 = \frac{-1}{-4} = \frac{1}{4} \Rightarrow d = \pm \frac{1}{2}.$$

Case-I When $d = \frac{1}{2}$, from (i), we have

$$a + 2 = 3 \Rightarrow a = 3 - 2 = 1$$

Now, using
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we get

The sum of first 16 terms,

$$S_{16} = \frac{16}{2} \left[2(1) + (16 - 1) \times \frac{1}{2} \right] = 8 \left[2 + \frac{15}{2} \right] = 16 + 60 = 76$$

Case-II When $d = -\frac{1}{2}$, from (i), we have

$$a+4\left(-\frac{1}{2}\right)=3 \implies a-2=3 \implies a=5$$

So, the sum of first 16 terms,

$$S_{16} = \frac{16}{2} \left[2(5) + (16 - 1) \times \left(-\frac{1}{2} \right) \right]$$
$$= 8 \left[10 + \left(\frac{-15}{2} \right) \right] = 80 - 60 = 20$$

3. Distance between bottom and top rungs = $2\frac{1}{2}$ m = $\frac{5}{2} \times 100$ cm = 250 cm

Distance between two consecutive rungs = 25 cm

 \therefore Number of rungs, n = 250/25 + 1 = 10 + 1 = 11

Length of the 1st rung (bottom rung) = 45 cm Length of the 11th rung (top rung) = 25 cm

Let the length of each successive rung decrease by x cm.

 \therefore Total length of the rungs = 45 cm +

$$(45 - x)$$
 cm + $(45 - 2x)$ cm + + 25 cm

Here, the number 45, (45 - x), (45 - 2x),, 25 are in an A.P. such that first term, a = 45 and last term, l = 25 Number of terms, n = 11

$$\therefore$$
 Using, $S_n = \frac{n}{2}[a+l]$, we have $S_{11} = \frac{11}{2}[45+25]$

$$\Rightarrow$$
 $S_{11} = \frac{11}{2} \times 70 \Rightarrow S_{11} = 11 \times 35 = 385$

- \therefore Total length of 11 rungs = 385 cm *i.e.*, Length of wood required for the rungs is 385 cm.
- **4.** We have the following consecutive numbers on the houses of a row; 1, 2, 3, 4, 5,, 49.

These numbers are in A.P., such that a = 1, d = 2 - 1 = 1, n = 49

Let one of the houses be numbered as *x*

 \therefore Number of houses preceding it = x - 1

Number of houses following it = 49 - x

Now, the sum of the house-numbers preceding x is

$$S_{x-1} = \frac{x-1}{2} [2(1) + (x-1-1) \times 1]$$
$$= \frac{x-1}{2} [2+x-2] = \frac{x(x-1)}{2} = \frac{x^2}{2} - \frac{x}{2}$$

The houses beyond x are numbered as (x + 1), (x + 2), (x + 3),, 49

:. For these house numbers (which are in an A.P.)

First term, a = x + 1

Last term, l = 49

$$\therefore \text{ Using } S_n = \frac{n}{2}[a+l], \text{ we have}$$

$$S_{49-x} = \frac{49-x}{2}[(x+1)+49]$$

$$= \frac{49-x}{2}[x+50] = \frac{49x}{2} - \frac{x^2}{2} + (49 \times 25) - 25x$$

$$= \left(\frac{49x}{2} - 25x\right) - \frac{x^2}{2} + (49 \times 25) = \frac{-x}{2} - \frac{x^2}{2} + (49 \times 25)$$

Now, [Sum of house numbers preceding x] = [Sum of house numbers following x]

i.e.,
$$S_{x-1} = S_{49-x}$$

$$\Rightarrow \frac{x^2}{2} - \frac{x}{2} = \frac{-x}{2} - \frac{x^2}{2} + (49 \times 25)$$

$$\Rightarrow \left(\frac{x^2}{2} + \frac{x^2}{2}\right) - \frac{x}{2} + \frac{x}{2} = (49 \times 25) \Rightarrow \frac{2x^2}{2} = (49 \times 25)$$

$$\Rightarrow$$
 $x^2 = (49 \times 25) \Rightarrow x = \pm \sqrt{49 \times 25}$

$$\Rightarrow x = \pm (7 \times 5) = \pm 35$$

But *x* cannot be taken as negative.

$$\therefore$$
 $x = 35$.

- 5. For 1^{st} step: Length = 50 m, Breadth = 1/2 m, Height = 1/4 m
- :. Volume of concrete required to build the 1st step
 - = Volume of the cuboidal step
 - = Length × breadth × height

$$= 50 \times \frac{1}{2} \times \frac{1}{4} \text{ m}^3 = \frac{25}{4} \times 1 \text{ m}^3$$

For 2^{nd} step: Length = 50 m, Breadth = 1/2 m, Height = $\left(\frac{1}{4} + \frac{1}{4}\right)$ m = $2 \times \frac{1}{4}$ m

:. Volume of concrete required to build the 2nd step $= 50 \times \frac{1}{2} \times \frac{1}{4} \times 2 \text{ m}^3 = \frac{25}{4} \times 2 \text{ m}^3$

For 3rd step: Length = 50 m, Breadth = 1/2 m, Height = $\left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right)$ m = $3 \times \frac{1}{4}$ m

.. Volume of concrete required to build the 3rd step $= 50 \times \frac{1}{2} \times \frac{1}{4} \times 3 \text{ m}^3 = \frac{25}{4} \times 3 \text{ m}^3$

Thus, the volumes (in m³) of concrete required to build the various steps are:

 $\left(\frac{25}{4} \times 1\right), \left(\frac{25}{4} \times 2\right), \left(\frac{25}{4} \times 3\right), \dots$ obviously, these

numbers form an A.P. such that a = 25/4

$$d = \frac{25}{2} - \frac{25}{4} = \frac{25}{4}$$

Here, total number of steps, n = 15

Total volume of concrete required to build 15 steps is given by the sum of their individual volumes.

On using $S_n = \frac{n}{2}[2a + (n-1)d]$, we have

$$S_{15} = \frac{15}{2} \left[2 \left(\frac{25}{4} \right) + (15 - 1) \times \frac{25}{4} \right]$$
$$= \frac{15}{2} \left[\frac{25}{2} + 14 \times \frac{25}{4} \right] = \frac{15}{2} \left[\frac{25}{2} + \frac{175}{2} \right]$$
$$= 15 \times 50 = 750 \text{ m}^3$$

Thus, the required volume of concrete is 750 m³.

MtG BEST SELLING BOOKS FOR CLASS 10

































