Circles

NCERT FOCUS

SOLUTIONS

5 cm

•0

EXERCISE - 10.1

- A circle can have an infinite number of tangents. 1.
- 2. (i) exactly one (ii) secant
- (iv) point of contact (iii) two
- (d) : *PQ* is a tangent to the circle. 3.
- ÷. $OP \perp PQ$

_

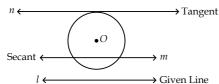
In right $\triangle POQ$, $OQ^2 = OP^2 + PQ^2$

$$PQ = \sqrt{OQ^2 - OP^2}$$

= $\sqrt{12^2 - 5^2} = \sqrt{144 - 25} = \sqrt{119} \text{ cm}$

$$=\sqrt{12^2-5^2}=\sqrt{144-25}=\sqrt{119}$$
 cm

We have the required figure, as shown 4.



Here, l is the given line and a circle with centre O is drawn.

The line n is drawn which is parallel to l and tangent to the circle. Also, *m* is drawn parallel to line *l* and is a secant to the circle.

(a) : $\therefore QT$ is a tangent 1. to the circle at *T* and *OT* is radius.

 $\therefore OT \perp QT$ Also, OQ = 25 cm

and QT = 24 cm

 \therefore Using Pythagoras theorem in $\triangle QTO$, we get $OQ^2 = QT^2 + OT^2$

 $\Rightarrow OT^2 = OQ^2 - QT^2 = 25^2 - 24^2 = 49 \Rightarrow OT = 7 \text{ cm}$ Thus, the required radius is 7 cm.

(b) : \therefore TQ and TP are tangents to a circle with 2. centre O.

 \therefore $OP \perp PT$ and $OQ \perp QT \Rightarrow \angle OPT = \angle OQT = 90^{\circ}$ Now, in the quadrilateral TPOQ, $\angle PTQ + 90^{\circ} + 110^{\circ} + 90^{\circ} = 360^{\circ}$

[By angle sum property of a quadrilateral] $\angle PTQ + 290^\circ = 360^\circ \Rightarrow \angle PTQ = 360^\circ - 290^\circ = 70^\circ$ \Rightarrow

(a) : Since, O is the centre of the circle and two 3. tangents from *P* to the circle are *PA* and *PB*.

 $OA \perp AP$ and $OB \perp BP$ *:*.. $\angle OAP = \angle OBP = 90^{\circ}$ \Rightarrow Now, in quadrilateral \cap PAOB, we have $\angle APB + \angle PAO + \angle AOB + \angle PBO = 360^{\circ}$ $80^{\circ} + 90^{\circ} + \angle AOB + 90^{\circ} = 360^{\circ}$ \Rightarrow $260^\circ + \angle AOB = 360^\circ$ \Rightarrow $\angle AOB = 360^{\circ} - 260^{\circ}$ \Rightarrow $\angle AOB = 100^{\circ}$ \Rightarrow In right $\triangle OAP$ and right $\triangle OBP$, we have

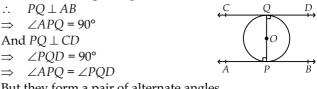
	OP = OP	[Common]
	$\angle OAP = \angle OBP$	[Each 90°]
	OA = OB	[Radii of the same circle]
	$\Delta OAP \cong \Delta OBP$	[By RHS congruence criterion]
⇒	$\angle POA = \angle POB$	[By CPCT]

$$\therefore \quad \angle POA = \frac{1}{2} \angle AOB = \frac{1}{2} \times 100^\circ = 50^\circ.$$

In the figure, PQ is diameter of the given circle and 4. O is its centre.

Let tangents AB and CD be drawn at the end points of the diameter PQ.

Since, the tangent at a point to a circle is perpendicular to the radius through the point of contact.



But they form a pair of alternate angles.

AB||CD.

Hence, the two tangents are parallel.

In the figure, the centre of the circle is O and 5. tangent *AB* touches the circle at *P*. If possible, let *PQ* be perpendicular to *AB* such that it is not passing through *O*. Join OP.

Since tangent at a point to a circle is perpendicular to the radius through that point.

$$\therefore OP \perp AB$$

$$\Rightarrow \angle OPB = 90^{\circ} \dots (1)$$

But by construction,

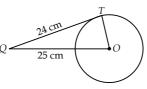
$$PQ \perp AB$$

$$\Rightarrow \angle QPB = 90^{\circ} \dots (2)$$

From (1) and (2),

$$\angle OPB = \angle OPB,$$

which is possible only when O and Q coincide. Thus, the perpendicular at the point of contact to the tangent to a circle passes through the centre.



MtG 100 PERCENT Mathematics Class-10

6. \therefore The tangent to a circle is perpendicular to the radius through the point of contact.

 $\therefore \ \angle OTA = 90^{\circ}$

Now, in the right $\triangle OTA$, we have

$$OA^{2} = OT^{2} + AT^{2}$$

$$\Rightarrow 5^{2} = OT^{2} + 4^{2}$$

$$\Rightarrow OT^{2} = 5^{2} - 4^{2}$$

$$\Rightarrow OT^{2} = 25 - 16$$

$$\Rightarrow OT^{2} = 9 = 3^{2}$$
[By Pythagoras theorem]

 $\Rightarrow OT = 3 \text{ cm}$

Thus, the radius of the circle is 3 cm.

7. In the figure, *O* is the common centre, of the given concentric circles.

AB is a chord of the bigger circle such that it is a tangent to the smaller circle at *P*.

Since *OP* is the radius of the smaller circle.

 $\therefore OP \perp AB \Rightarrow \angle APO = 90^{\circ}$ Also, radius perpendicular to a

chord bisects the chord.

 \therefore OP bisects AB

$$\Rightarrow AP = \frac{1}{2}AB$$

Now, in right $\triangle APO$, $OA^2 = AP^2 + OP^2$

$$\Rightarrow 5^{2} = AP^{2} + 3^{2} \Rightarrow AP^{2} = 5^{2} - 3^{2} = 25 - 9 = 16$$

$$\Rightarrow AP^2 = 4^2 \Rightarrow AP = 4 \text{ cm}$$

$$\Rightarrow \quad \frac{1}{2}AB = 4 \Rightarrow AB = 2 \times 4 = 8 \text{ cm}$$

Hence, the required length of the chord *AB* is 8 cm.

8. Since, the sides of quadrilateral *ABCD*, *i.e.*, *AB*, *BC*, *CD* and *DA* touch the circle at *P*, *Q*, *R* and *S* respectively, and the lengths of two tangents to a circle from an external point are equal.

AP = AS, BP = BQ, CR = CQ and DR = DSAdding all these equations, we get (AP + BP) + (CR + DR) = (BQ + CQ) + (DS + AS) $\Rightarrow AB + CD = BC + DA$ р Ioin OC. 9. Х ••• The tangents drawn a circle from an to external point are equal. AP = AC*.*.. ...(1) In $\triangle PAO$ and $\triangle CAO$, we have. 0 AO = AO[Common] OP = OC[Radii of the same circle] AP = AC[Using (1)][By SSS congruency criterion] $\Delta PAO \cong \Delta CAO$ $\angle PAO = \angle CAO$ [By CPCT] \Rightarrow $\Rightarrow \angle PAC = 2\angle CAO$...(2) Similarly, $\angle CBQ = 2 \angle CBO$...(3) Again, we know that sum of internal angles on the same side of a transversal is 180°

$$\therefore$$
 /PAC + /CBO = 180°

$$\Rightarrow 2\angle CAO + 2\angle CBO = 180^{\circ}$$
 [From (2) and (3)]

 $\Rightarrow \angle CAO + \angle CBO = \frac{180^{\circ}}{2} = 90^{\circ} \qquad \dots (4)$ Also, in $\triangle AOB$, $\angle BAO + \angle ABO + \angle AOB = 180^{\circ}$

[Sum of angles of a triangle] $\Rightarrow \angle CAO + \angle CBO + \angle AOB = 180^{\circ}$

 $\Rightarrow \angle CAO + \angle CBO + \angle$ $\Rightarrow 90^{\circ} + \angle AOB = 180^{\circ}$

 $\Rightarrow \angle AOB = 180^\circ - 90^\circ \Rightarrow \angle AOB = 90^\circ.$

10. Let *PA* and *PB* be two tangents drawn from an external point *P* to a circle with centre O. Ν 0 in right ΔOAP and right ΔOBP , we have

PA = *PB* [Tangents to a circle from an external point] OA = OB[Radii of the same circle] OP = OP[Common] $\triangle OAP \cong \triangle OBP$ [By SSS congruency criterion] $\angle OPA = \angle OPB$ and $\angle AOP = \angle BOP$ [By CPCT] \Rightarrow $\angle APB = 2 \angle OPA$ and $\angle AOB = 2 \angle AOP$ \Rightarrow ...(1) But $\angle AOP = 90^\circ - \angle OPA \implies 2\angle AOP = 180^\circ - 2\angle OPA$ [Using (1)] \Rightarrow $\angle AOB = 180^{\circ} - \angle APB$

 $\Rightarrow \ \angle AOB + \angle APB = 180^{\circ}.$

11. We have *ABCD*, a parallelogram which circumscribes a circle (*i.e.*, its sides touch the circle) with centre *O*. Since, tangents to a circle from an external point are equal in length.

 $\therefore AP = AS \implies BP = BQ$

 $CR = CQ \implies DR = DS$

Adding above all, we get (AP + BP) + (CR + DR)= (AS + DS) + (BQ + CQ)

 $\Rightarrow AB + CD = AD + BC$

But AB = CD [:: Opposite sides of parallelogram] and BC = AD

 $\therefore AB + CD = AD + BC \Rightarrow 2AB = 2BC \Rightarrow AB = BC$ Similarly, AB = DA and DA = CD

Thus, AB = BC = CD = AD

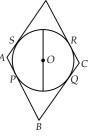
Hence, ABCD is a rhombus.

12. Join *OA*, *OE*, *OF*, *OB* and *OC*.

Here, $\triangle ABC$ circumscribe the circle with centre *O*. Also, radius = 4 cm

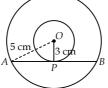
 \therefore The sides *BC*, *CA* and *AB* touch the circle

at *D*, *E* and *F* respectively. $\therefore BF = BD = 8 \text{ cm}$ CD = CE = 6 cm AF = AE = x cm (say)So, the sides of the triangle are 14 cm, (x + 6) cm and (x + 8) cm Perimeter of $\triangle ABC$ = [14 + (x + 6) + (x + 8)] cm = [14 + 6 + 8 + 2x] cm = (28 + 2x) cm



D

[Using (4)]



Circles

⇒ Semi perimeter of ΔABC (s)

$$= \frac{1}{2} [28 + 2x] \text{ cm} = (14 + x) \text{ cm},$$
where $a = BC$, $b = AC$, $c = AB$
∴ $s - a = (14 + x) - (14) = x$
 $s - b = (14 + x) - (6 + x) = 8$
 $s - c = (14 + x) - (8 + x) = 6$
∴ Area of ΔABC = $\sqrt{(14 + x)(x)(8)(6)}$ cm²
 $= \sqrt{(14 + x)48x}$ cm² ...(1) me
Now, $ar(\Delta OBC) = \frac{1}{2} \times BC \times OD$
 $= \frac{1}{2} \times 14 \times 4 = 28 \text{ cm}^2$ [: $OD = \text{Radius}$]
 $ar (\Delta OCA) = \frac{1}{2} CA \times OE = \frac{1}{2} \times (x + 6) \times 4 = (2x + 12) \text{ cm}^2$
 \therefore $ar (\Delta ABC) = ar (\Delta OBC) + ar (\Delta OCA) + ar (\Delta OAB)$
 $= 28 \text{ cm}^2 + (2x + 12) \text{ cm}^2 + (2x + 16) \text{ cm}^2$
 \therefore $ar (\Delta ABC) = ar (\Delta ABC) + ar (\Delta OCA) + ar (\Delta OAB)$
 $= 28 \text{ cm}^2 + (2x + 12) \text{ cm}^2 + (2x + 16) \text{ cm}^2$
 \therefore $ar (\Delta ABC) = ar (\Delta ABC) + ar (\Delta OCA) + ar (\Delta OAB)$
 $= 28 \text{ cm}^2 + (2x + 12) \text{ cm}^2 + (2x + 16) \text{ cm}^2$
 $\Rightarrow 4(14 + x) = 4\sqrt{(14 + x)} \times 3x$
 $\Rightarrow 14 + x = \sqrt{(14 + x)} 3x$
 $\Rightarrow 14 + x = \sqrt{(14 + x)} 3x$
 $\Rightarrow 196 + x^2 + 28x = 42x + 3x^2$
 $\Rightarrow 2x^2 + 14x - 196 = 0$
 $\Rightarrow x^2 + 7x - 98 = 0$
 $\Rightarrow (x - 7) (x + 14) = 0$

$$\Rightarrow$$
 x - 7 = 0 or x + 14 = 0 \Rightarrow x = 7 or x = -14

But x = -14 is rejected. $\therefore x = 7$ cm Thus, AB = 8 + 7 = 15 cm and CA = 6 + 7 = 13 cm.

13. We have a circle with centre *O*. A quadrilateral *ABCD* is such that the sides *AB*, *BC*, *CD* and *DA* touch the circle at *P*, *Q*, *R* and *S* respectively.

Let us join *OP*, *OQ*, *OR* and *OS*.

We know that tangents drawn from an external point to a ^A circle subtend equal angles at the centre.

 $\begin{array}{c} \swarrow 1 = \measuredangle 2 \\ \swarrow 3 = \measuredangle 4 \\ \measuredangle 5 = \measuredangle 6 \end{array}$

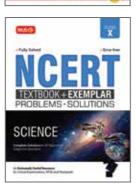
and $\angle 7 = \angle 8$

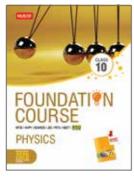
Also, the sum of all the angles around a point is 360°. $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$ •. $2(\angle 1 + \angle 8 + \angle 5 + \angle 4) = 360^{\circ}$ $\Rightarrow (\angle 1 + \angle 8) + (\angle 5 + \angle 4) = 180^{\circ}$...(1) And $2(\angle 2 + \angle 3 + \angle 6 + \angle 7) = 360^{\circ}$ $\Rightarrow (\angle 2 + \angle 3) + (\angle 6 + \angle 7) = 180^{\circ}$...(2) Since, $\angle 2 + \angle 3 = \angle AOB$, $\angle 6 + \angle 7 = \angle COD$ $\angle 1 + \angle 8 = \angle AOD$, $\angle 4 + \angle 5 = \angle BOC$ From (1) and (2), we have $\angle AOD + \angle BOC = 180^{\circ}$ and $\angle AOB + \angle COD = 180^{\circ}$

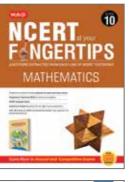
В

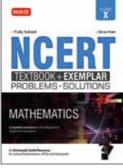
D

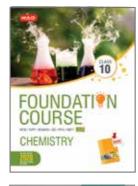
Mtg BEST SELLING BOOKS FOR CLASS 10

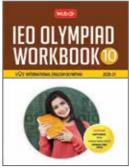


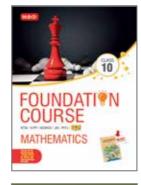


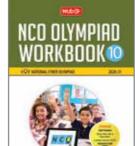


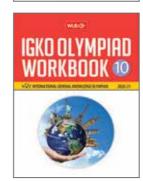




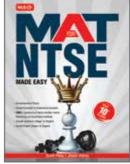


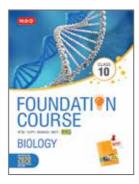


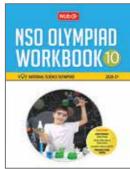


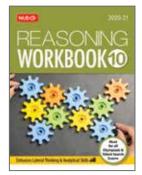












Visit www.mtg.in for complete information