Circles

SOLUTIONS

(d) : Since, tangent is perpendicular to the radius 1. through the point of contact.

 $OA \perp AP$ *.*..

EXAM DRILL

- By Pythagoras theorem, in right angle $\triangle AOP$ *.*..
 - $OA^2 = OP^2 PA^2 = 10^2 8^2 = 36 \implies OA = 6 \text{ cm}$
- OB = OA = 6 cm[Radii of the same circle] *.*.. (c): We know that length of tangents drawn from an 2. external point to the circle are equal.

BR = BP = 5 cm, AR = AQ = 3 cmand QC = PC = 7 - 3 = 4 cm So, BC = BP + PC = 5 + 4 = 9 cm

(c) : Since, tangent is perpendicular to the radius 3. through the point of contact.

 $\angle OTP = 90^{\circ}$ *.*..

In $\triangle OTP$, $OP^2 = OT^2 + PT^2$ [By Pythagoras theorem] $10^2 = 6^2 + PT^2 \implies PT^2 = 100 - 36 = 64 \implies PT = 8 \text{ cm}$ \Rightarrow

(c): CR = CQ = 3 cm, BQ = BP = 5 cm, AS = AP = 6 cm 4. and DS = DR = 4 cm

Perimeter of quadrilateral ABCD = [(6 + 5) + (5 + 3)]*.*.. +(3+4)+(4+6)] cm = (11 + 8 + 7 + 10) cm = 36 cm.

- We have, $\angle AOB + \angle APB = 180^{\circ}$ 5. [:: $\angle AOB$ and $\angle APB$ are supplementary]
- $\angle APB = 180^{\circ} 107^{\circ} = 73^{\circ}$ \Rightarrow
- (:: $OQ \perp PR$) Since, $AB \mid \mid PR$ and $QOL \perp AB$ 6. OL bisects chord AB.
- *.*.. ΔAQB is isosceles. *.*..
- $\angle LQA = \angle LQB$ \Rightarrow
- But, $\angle LOB = 90^{\circ} 67^{\circ} = 23^{\circ}$
- $\angle AQB = \angle LQA + \angle LQB = 2(23^{\circ}) = 46^{\circ}$ *.*...
- We have, AB = 7 cm, BC = 9 cm and CA = 6 cm 7.
- Now, AR = AP = r (say) [Radii of the same circle] BP = BQ = x (say) CR = CQ = y (say) r + x = 7...(i)

x + y = 9...(ii) y + r = 6...(iii)

Subtracting (ii) from (i), we get r - y = -2...(iv) Adding (iii) and (iv), we get $2r = 4 \implies r = 2 \text{ cm}$

8. Since, tangents drawn from an external point are equal.

$\therefore BQ = BR$	[Tangents from <i>B</i>]	(i)
CQ = CP	[Tangents from C]	(ii)
Now, $BC + BQ = CQ = 11$	[Using (ii)]	

- \Rightarrow 7 + BO = 11
- $\Rightarrow BQ = 11 7 = 4 \text{ cm}$
- $\therefore BR = 4 \text{ cm}$
- We have, $\angle OAT = 90^{\circ}$ [:: Tangent is perpendicular 9 to the radius through the point of contact.] In right angle $\triangle OAT$,

$$\frac{AT}{OT} = \cos 30^\circ \Rightarrow \frac{AT}{8} = \frac{\sqrt{3}}{2}$$
$$\Rightarrow AT = 4\sqrt{3} \text{ cm}$$

10. Two parallel tangents of a circle can be drawn only at the end points of the diameter.

In figure, $l_1 \parallel l_2$

 \Rightarrow Distance between l_1 and l_2 , AB = Diameter of the circle $= 2 \times r = 2 \times 9 = 18$ cm

11. Given, *BC* = 4.5 cm

 \Rightarrow CP = 4.5 cm

Now, AC = CP = 4.5 cm [:: Tangents from an external point are equal.]

AB = AC + BC = 4.5 + 4.5 = 9 cm*.*...

12. Since, tangent is perpendicular to the radius through the point of contact.

- $\angle OPT = 90^{\circ}$ *:*..
- ÷. $\angle OPQ = 90^{\circ} - 50^{\circ} = 40^{\circ}$ Also, OP = OQ[Radii of same circle] $\angle OQP = \angle OPQ = 40^{\circ}$ \Rightarrow
- $\angle POQ = 180^{\circ} (40^{\circ} + 40^{\circ}) = 100^{\circ}.$ *.*..

13.
$$\therefore$$
 PQ is a diameter[Given] \therefore $\angle QOR + \angle ROP = 180^{\circ}$ [Linear pair] \Rightarrow $\angle QOR = 180^{\circ} - 70^{\circ} = 110^{\circ}$ Also, $OQ = OR$ [Radii of same circle] \Rightarrow $\angle RQO = \angle ORQ$ [\because Angles opposite to equal
sides of triangle are equal.]

$$=\frac{180^{\circ}-110^{\circ}}{2}=\frac{70^{\circ}}{2}=35^{\circ}$$
...(i)

Also, $QP \perp PT$ [:: Tangent is perpendicular to the radius through the point of contact]

$$\Rightarrow \angle QPT = 90^{\circ} \qquad \dots (ii)$$

In $\triangle QPT, \angle RQO + \angle QPT + x = 180^{\circ}$

[Using (i)]

MtG 100 PERCENT Mathematics Class-10

 $x = 180^{\circ} - 90^{\circ} - 35^{\circ}$ [Using (i) and (ii)] *.*.. = 55° **14.** *PA* = *AM* [Given] $\angle APM = \angle PMA$ *.*.. ...(i) Also, $\angle PMA = \angle MBA$...(ii) [By alternate segment theorem] $\angle MPB = \angle MBP$ \Rightarrow [Using (i) and (ii)] P MB = PM...(iii) \Rightarrow ΔPMB is isosceles. Now, we know that $PM^2 = PA \times PB$, $MB^2 = PA \times PB$, ÷. [From (iii)] which means both statements 'A' and 'B' are true. 15. Since, tangents drawn from an external point are equal. cm $\therefore PA = PB = 24$ cm. Also, $\angle OBP = 90^{\circ}$ [Since, tangent is perpendicular to the radius through the point of contact.] In $\triangle POB$, we have $OP^2 = OB^2 + BP^2$ [By Pythagoras theorem] \Rightarrow $\Rightarrow 25^2 = OB^2 + 24^2$ \rightarrow $OB^2 = 625 - 576 = 49 \implies OB = 7 \text{ cm}$ \Rightarrow 16. Since tangent is perpendicular to the radius through the point of contact. $\therefore \angle OAP = 90^{\circ}$ Now, in $\triangle OAP$, $\sin\left(\angle OPA\right) = \frac{OA}{OP} = \frac{r}{2r} = \frac{1}{2}$ $\angle OPA = 30^{\circ}$ $\angle APB = 2(\angle OPA) = 2 \times 30^\circ = 60^\circ$ • ...(i) Also, AP = PB[∴ Tangents drawn from an external point are equal.] $\angle PAB = \angle PBA$...(ii) *.*.. In $\triangle PAB$, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$ $\Rightarrow 2 \angle PAB = 180^\circ - 60^\circ = 120^\circ$ [Using (i) and (ii)] $\Rightarrow \angle PAB = 60^{\circ}$ Hence, $\angle PAB = \angle PBA = \angle APB = 60^{\circ}$ _ ΔAPB is an equilateral triangle. 17. Since angle made by an arc at the centre of a circle is C twice the angle subtended by the same arc at any point on the remaining part of the circle. ÷., $\angle AOQ = 2 \angle ABQ$ $\angle ABQ = \frac{1}{2} \times 78^\circ = 39^\circ$ In $\triangle ABT$, $\angle BAT + \angle ABT + \angle ATB = 180^{\circ}$ $90^{\circ} + 39^{\circ} + \angle ATB = 180^{\circ}$ \Rightarrow $\angle ATB = 51^{\circ}$ \Rightarrow $\angle ATQ = 51^{\circ}$ *.*.. **18.** We have, $\angle APB = 50^{\circ}$ Now, PA = PB[:: Tangents drawn from an external

Now, PA = PB [:: Tangents drawn from an external point are equal]

 $\Rightarrow \angle PAB = \angle PBA$

In
$$\triangle PAB$$
, $\angle PAB + \angle PBA + \angle PAB = 180^{\circ}$
 $\Rightarrow 2\angle PAB = 180^{\circ} - 50^{\circ} \Rightarrow \angle PAB = \frac{130^{\circ}}{2} = 65^{\circ}$

Now, $\angle OAB = 90^\circ - \angle PAB$ [:: $OA \perp AP \Rightarrow \angle OAP = 90^\circ$] = $90^\circ - 65^\circ = 25^\circ$

19. From the figure, it is clear that *O* and *Q* are centres of smaller and bigger circle respectively.

Now,
$$OT = OQ = \frac{1}{2}(PQ) = \frac{14}{2} = 7 \text{ cm}$$

 $\therefore OR = 7 + 14 = 21 \text{ cm}$

$$\angle OTR = 90^{\circ}$$
 [:: Tangent is perpendicular to the radius through the point of contact.]

In right ΔOTR ,

 $OT^{2} + RT^{2} = OR^{2}$ $\Rightarrow (7)^{2} + RT^{2} = (21)^{2} \Rightarrow RT^{2} = 441 - 49 = 392$ $\Rightarrow RT^{2} = 14 \times 14 \times 2 \Rightarrow RT = 14\sqrt{2} \text{ cm}$ 20. We have, OA = OB [Radii of the same circle] $\Rightarrow \angle 3 = \angle 1 = 35^{\circ}$ [: Angles opposite to equal sides of a triangle are equal] But, $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ [By angle sum property] $\Rightarrow 35^{\circ} + 35^{\circ} + \angle 2 = 180^{\circ}$ $\Rightarrow \angle 2 = 180^{\circ} - 70^{\circ} = 110^{\circ}$

Also, $\angle 4 = \frac{1}{2} \angle 2$

[Since angle made by an arc at the centre of a circle is twice the angle

subtended by the same arc at any point on the remaining part of the circle.]

Q

R

$$=\frac{1}{2}\times 110^\circ = 55^\circ$$

$$\Rightarrow \angle ACB = 55$$

- \therefore By alternate segment theorem, $\angle BAQ = \angle ACB = 55^{\circ}$
- **21.** We have, $OP \perp OQ$

Also, $OP \perp PT$ and $OQ \perp TQ$

[:: Tangent is perpendicular to the radius through the point of contact]

:. In quadrilateral *OPTQ*, $\angle P = \angle Q = \angle O = 90^{\circ}$...(i) Now, $\angle P + \angle Q + \angle O + \angle T = 360^{\circ}$

$$\Rightarrow \ \ \angle T = 360^{\circ} - (90 + 90^{\circ} + 90^{\circ}) \\ = 360^{\circ} - 270^{\circ} = 90^{\circ} \qquad \dots (ii)$$

Hence, PQ and OT are right bisectors of each other.

22. Given, a hexagon *ABCDEF* circumscribes a circle. Since, tangents from an external point are equal. $\therefore AQ = AP, QB = BR, CS = CR,$ DS = DT, EU = ET, UF = FPNow, AB + CD + EF = (AQ + QB) +(CS + SD) + (EU + UF)= (AP + BR) + (CR + DT) + (ET + FP)= (AP + FP) + (BR + CR) + (DT + ET)= AF + BC + DE

2

23. Join OC

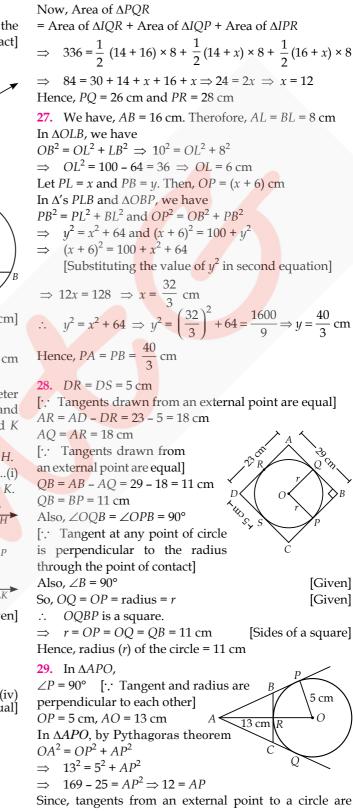
Now, $OC \perp CD$ [:: Tangent is perpendicular to the radius through the point of contact] Also, $OC = OA \Rightarrow \angle 1 = 30^{\circ}$ Now, $\angle 1 + \angle 2 = 90^{\circ}$ Α [Angle in a semicircle] $\angle 2 = 90^{\circ} - 30^{\circ} = 60^{\circ}$ ÷. ∠3 = 30° \Rightarrow In $\triangle ACD$, $\angle ACD + \angle CAD + \angle 4 = 180^{\circ}$ $\Rightarrow (30^\circ + 60^\circ + 30^\circ) + 30^\circ + \angle 4 = 180^\circ \Rightarrow \angle 4 = 30^\circ$ In $\triangle BCD$, $\angle 3 = \angle 4$: BC = BD. **24.** $OP \perp AB$ [:: Tangent is perpendicular to the radius through the point of contact] \therefore AP = BP [: AB is chord to larger circle and $OP \perp AB$] $4 \,\mathrm{cm}$ $\therefore AP = \frac{8}{2} = 4 \text{ cm} [\because AB = 8 \text{ cm}]$ $OP = \frac{6}{2} = 3 \text{ cm}$ [:: Diameter of smaller circle = 6 cm] In right $\triangle OAP$, $OA^2 = OP^2 + AP^2$ $= 3^{2} + 4^{2} = 9 + 16 = 25 \implies OA = 5 \text{ cm}$ Thus, diameter of the larger circle is 10 cm. 25. Given, a circle with center O. AB is the diameter of this circle. HK is tangent to the circle at P. AH and BK are perpendicular to HK from A and B at H and K respectively. Since, *AH* and *HP* are tangents from the external point *H*. $\therefore AH = HP$...(i) Also, *KB* and *KP* are tangents from the external point *K*. BK = KP*.*.. ...(ii) Adding (i) and (ii), we get AH + BK = HP + PK = HK...(iii) $AB \perp AH$ and $AB \perp BK$ 0 : Tangent is perpendicular to the radius through the point of contact] $\therefore \quad \angle 1 = \angle 2 = 90^{\circ}$ Also, $AH \perp HK$ [Given] $\Rightarrow \angle 3 = 90^{\circ}$ and $BK \perp HK \Rightarrow \angle 4 = 90^{\circ}$ Thus, $\angle 1 = \angle 2 = \angle 3 = \angle 4 = 90^{\circ}$:. AHKB is a rectangle. AB = HK \Rightarrow ...(iv) [:: Opposite sides of a rectangle are equal] From (iii) and (iv), AH + BK = AB**26.** Since, length of tangents drawn form an external point to a circle are equal. х QS = QT = 14 cm,*.*.

RU = RT = 16 cm. Let, PS = PU = x cmThus, PQ = (x + 14) cm PR = (x + 16) cmand QR = 30 cm

14 cm

Q

14 cm 7



equal.

$$\therefore \quad AP = AQ, BP = BR, CQ = CR \qquad \dots (i)$$

Perimeter of $\triangle ABC = AB + BC + AC$

16 cm

16 cm

8 cm

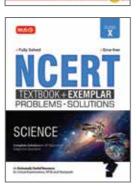
= AB + (BR + RC) + AC = AB + BP + CQ + AC [Using (i)] $= AP + AQ = AP + AP = 2AP = 2 \times 12 = 24$ cm

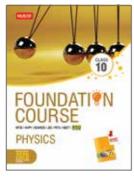
MtG 100 PERCENT Mathematics Class-10

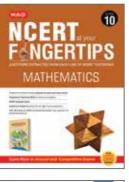
 $(OP)^2 = (ON)^2 + (NP)^2$ 30. Here, two circles are of [By Pythagoras theorem] \Rightarrow $(NP)^2 = 3^2 - x^2 = 9 - x^2$ radii OP = 3 cm and ...(i) 4 cm O'P = 4 cm. and in right angled $\Delta PNO'$, 3 cm These two circles intersect at *P* $(PO')^2 = (PN)^2 + (NO')^2$ [By Pythagoras theorem] 0 and Q. \Rightarrow $(4)^2 = (PN)^2 + (5 - x)^2$ Here, OP and O'P are two $(PN)^2 = 16 - (5 - x)^2$ \Rightarrow ...(ii) tangents drawn at point P. From (i) and (ii), we have $\angle OPO' = 90^{\circ}$ $9 - x^2 = 16 - (5 - x)^2$ [: Tangent at any point of circle is perpendicular to $\Rightarrow 7 + x^2 - (5 - x)^2 = 0$ radius through the point of contact] $7 + x^2 - (25 + x^2 - 10x) = 0$ \Rightarrow Join OO' and PQ such that OO' and PQ intersect at $10x = 18 \implies x = 1.8 \text{ cm}$ \Rightarrow point N. Again, in right angled $\triangle OPN$, In right angled $\triangle OPO'$, $OP^2 = (ON)^2 + (NP)^2$ [By Pythagoras theorem] $(OO')^2 = (OP)^2 + (PO')^2$ [By Pythagoras theorem] $3^2 = (1.8)^2 + (NP)^2$ \Rightarrow $\Rightarrow (OO')^2 = (3)^2 + (4)^2 = 25$ $(NP)^2 = 9 - 3.24 = 5.76$ \Rightarrow $\Rightarrow OO' = 5 \text{ cm}$ NP = 2.4 cmAlso, $PN \perp OO'$ \Rightarrow Length of common chord, Let ON = x, then NO' = 5 - x*.*.. $PQ = 2PN = 2 \times 2.4 = 4.8$ cm In right angled $\triangle ONP$,

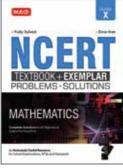
4

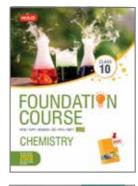
Mtg BEST SELLING BOOKS FOR CLASS 10

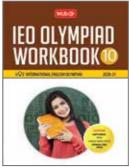


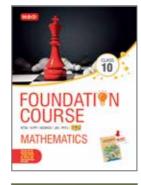


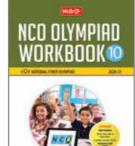


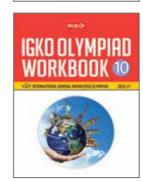


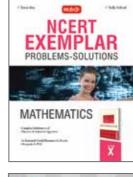


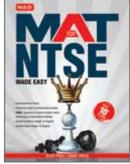


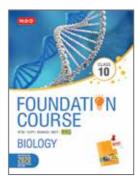


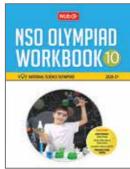


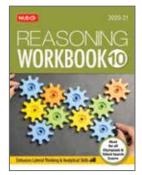












Visit www.mtg.in for complete information